查询解析任务进度
开发中
GET
/api/v2/extract/task/progress
请求参数
Query 参数
id
string
解析任务id
示例值:
2
示例代码
Shell
JavaScript
Java
Swift
Go
PHP
Python
HTTP
C
C#
Objective-C
Ruby
OCaml
Dart
R
请求示例请求示例
Shell
JavaScript
Java
Swift
curl --location --request GET 'http://dev-cn.your-api-server.com/api/v2/extract/task/progress?id=2'
返回响应
🟢200成功
application/json
Body
code
integer
必需
data
object
必需
content
array [object {4}]
必需
fileName
string
文件名称
fullMdLink
string
全文markdown链接
markdownUrl
array[string]
markdown分页链接
state
enum<string>
任务状态
枚举值:
runningpendingfinished
status
integer
必需
type
string
任务类型
url
string
文件链接
msg
string
必需
success
boolean
必需
示例
{ "code": 200, "data": { "content": [ { "discarded_blocks": [ { "bbox": [ 505, 37, 558, 49 ], "lines": [ { "bbox": [ 505.2149658203125, 37.737548828125, 555.0382690429688, 49.74248504638672 ], "spans": [ { "bbox": [ 505.2149658203125, 37.737548828125, 513.802734375, 49.17461395263672 ], "content": "©", "score": 1, "type": "text" }, { "bbox": [ 513.802978515625, 37.737548828125, 555.0382690429688, 49.74248504638672 ], "content": "ESO 2024", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 14, 234, 36, 635 ], "lines": [ { "bbox": [ 10.940000534057617, 234.38995361328125, 37.619998931884766, 639.8900146484375 ], "spans": [ { "bbox": [ 10.940000534057617, 234.38995361328125, 37.619998931884766, 639.8900146484375 ], "content": "arXiv:2405.08702v1 [astro-ph.GA] 14 May 2024", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 455, 770, 558, 779 ], "lines": [ { "bbox": [ 455.1949157714844, 769.8161010742188, 558.4251098632812, 780.62060546875 ], "spans": [ { "bbox": [ 455.1949157714844, 769.8161010742188, 558.4251098632812, 780.62060546875 ], "content": "Article number, page 1 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 38, 37, 223, 60 ], "lines": [ { "bbox": [ 40.237998962402344, 37.737548828125, 222.8231201171875, 49.74248504638672 ], "spans": [ { "bbox": [ 40.237998962402344, 37.737548828125, 85.06969451904297, 49.74248504638672 ], "content": "Astronomy", "score": 1, "type": "text" }, { "bbox": [ 85.06969451904297, 39.39087677001953, 95.31089782714844, 49.353477478027344 ], "content": " &", "score": 1, "type": "text" }, { "bbox": [ 95.31089782714844, 37.737548828125, 149.77688598632812, 49.74248504638672 ], "content": " Astrophysics", "score": 1, "type": "text" }, { "bbox": [ 149.77688598632812, 37.737548828125, 222.8231201171875, 49.74248504638672 ], "content": " manuscript no. aa", "score": 1, "type": "text" } ] }, { "bbox": [ 40.23797607421875, 48.696533203125, 95.85916137695312, 60.70146942138672 ], "spans": [ { "bbox": [ 40.23797607421875, 48.696533203125, 95.85916137695312, 60.70146942138672 ], "content": "May 15, 2024", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 0, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 65, 109, 531, 147 ], "lines": [ { "bbox": [ 64.38899993896484, 109.03148651123047, 530.8878173828125, 129.57286071777344 ], "spans": [ { "bbox": [ 64.38899993896484, 109.03148651123047, 530.8878173828125, 129.57286071777344 ], "content": "The physical mechanism behind magnetic field alignment in", "score": 1, "type": "text" } ] }, { "bbox": [ 227.4849853515625, 128.9564666748047, 367.7911682128906, 149.4978485107422 ], "spans": [ { "bbox": [ 227.4849853515625, 128.9564666748047, 367.7911682128906, 149.4978485107422 ], "content": "interstellar clouds", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 124.26798248291016, 153.35096740722656, 470.510009765625, 170.45645141601562 ], "lines": [ { "bbox": [ 124.26798248291016, 153.35096740722656, 470.510009765625, 170.45645141601562 ], "spans": [ { "bbox": [ 124.26798248291016, 157.3109893798828, 220.91168212890625, 170.45645141601562 ], "content": "Guido Granda-Muñoz", "score": 1, "type": "text" }, { "bbox": [ 220.91098022460938, 156.06658935546875, 224.89602661132812, 165.67056274414062 ], "content": "1", "score": 1, "type": "text" }, { "bbox": [ 224.89598083496094, 157.20840454101562, 226.8885040283203, 165.1785125732422 ], "content": ",", "score": 1, "type": "text" }, { "bbox": [ 232.69998168945312, 157.3109893798828, 357.51092529296875, 170.45645141601562 ], "content": ",Enrique Vázquez-Semadeni", "score": 1, "type": "text" }, { "bbox": [ 357.510986328125, 156.06658935546875, 361.49603271484375, 165.67056274414062 ], "content": "1", "score": 1, "type": "text" }, { "bbox": [ 361.49603271484375, 153.35096740722656, 364.7209777832031, 170.45645141601562 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 364.7209777832031, 157.3109893798828, 466.52459716796875, 170.45645141601562 ], "content": "and Gilberto C. Gómez", "score": 1, "type": "text" }, { "bbox": [ 466.52496337890625, 156.06658935546875, 470.510009765625, 165.67056274414062 ], "content": "1", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 63, 182.2520294189453, 535, 236.16256713867188 ], "lines": [ { "bbox": [ 63, 182.2520294189453, 535, 196.31155395507812 ], "spans": [ { "bbox": [ 63.51275634765625, 182.2520294189453, 535.7510375976562, 196.31155395507812 ], "content": " Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán", "score": 1, "type": "text" } ] }, { "bbox": [ 68, 195.4700469970703, 122.78550720214844, 206.27456665039062 ], "spans": [ { "bbox": [ 68.49395751953125, 195.4700469970703, 122.78550720214844, 206.27456665039062 ], "content": "58089, México", "score": 1, "type": "text" } ] }, { "bbox": [ 68, 205.43202209472656, 298.5536804199219, 216.23654174804688 ], "spans": [ { "bbox": [ 68.49395751953125, 205.43202209472656, 93.89576721191406, 216.23654174804688 ], "content": "e-mail:", "score": 1, "type": "text" }, { "bbox": [ 93.89576721191406, 206.3466033935547, 298.5536804199219, 215.3578338623047 ], "content": " e.vazquez@irya.unam.mx,g.gomez@irya.unam.mx", "score": 1, "type": "text" } ] }, { "bbox": [ 63, 212.14002990722656, 529, 226.19955444335938 ], "spans": [ { "bbox": [ 63.51275634765625, 212.14002990722656, 529.6361694335938, 226.19955444335938 ], "content": " Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Chile", "score": 1, "type": "text" } ] }, { "bbox": [ 68, 225.35804748535156, 204.40634155273438, 236.16256713867188 ], "spans": [ { "bbox": [ 68.49395751953125, 225.35804748535156, 93.89576721191406, 236.16256713867188 ], "content": "e-mail:", "score": 1, "type": "text" }, { "bbox": [ 93.89576721191406, 226.2726287841797, 204.40634155273438, 235.2838592529297 ], "content": " guido.granda@edu.uai.cl", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 59, 243.29103088378906, 171.95762634277344, 254.09555053710938 ], "lines": [ { "bbox": [ 59, 243.29103088378906, 171.95762634277344, 254.09555053710938 ], "spans": [ { "bbox": [ 59.5279541015625, 243.29103088378906, 171.95762634277344, 254.09555053710938 ], "content": "Received XXX; accepted YYY", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 273, 268, 322, 280 ], "lines": [ { "bbox": [ 274.387939453125, 269.8934020996094, 320.8876953125, 280.5920104980469 ], "spans": [ { "bbox": [ 274.387939453125, 269.8934020996094, 320.8876953125, 280.5920104980469 ], "content": "ABSTRACT", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 59, 288.6210632324219, 535, 309.3875427246094 ], "lines": [ { "bbox": [ 59, 288.6210632324219, 535, 299.4255676269531 ], "spans": [ { "bbox": [ 59.52793884277344, 288.7883605957031, 90.9934310913086, 299.3336486816406 ], "content": "Context.", "score": 1, "type": "text" }, { "bbox": [ 90.9934310913086, 288.6210632324219, 535.7450561523438, 299.4255676269531 ], "content": " A tight correlation between interstellar clouds contours and their local magnetic field orientation has been widely observed.", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 298.5830383300781, 355.1231994628906, 309.3875427246094 ], "spans": [ { "bbox": [ 59.52793884277344, 298.5830383300781, 355.1231994628906, 309.3875427246094 ], "content": "However, the physical mechanisms responsible for this correlation remain unclear.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 59, 318.5080261230469, 535, 349.2385559082031 ], "lines": [ { "bbox": [ 59, 318.5080261230469, 535, 329.3125305175781 ], "spans": [ { "bbox": [ 59.5279426574707, 318.6753234863281, 94.43470764160156, 329.2206115722656 ], "content": "Methods.", "score": 1, "type": "text" }, { "bbox": [ 94.43470764160156, 318.5080261230469, 535.7487182617188, 329.3125305175781 ], "content": " We perform three- and two-dimensional MHD simulations of warm gas streams in the thermally-bistable atomic interstellar", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 328.4710388183594, 535, 339.2755432128906 ], "spans": [ { "bbox": [ 59.52794647216797, 328.4710388183594, 535.7512817382812, 339.2755432128906 ], "content": "medium (ISM) colliding with velocities of the order of the velocity dispersion in the ISM. In these simulations, we follow the evolution", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 338.4340515136719, 389.7962341308594, 349.2385559082031 ], "spans": [ { "bbox": [ 59.52794647216797, 338.4340515136719, 389.7962341308594, 349.2385559082031 ], "content": "of magnetic field lines, identify and elucidate the physical processes causing their evolution.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 59, 348.39605712890625, 535, 478.752685546875 ], "lines": [ { "bbox": [ 59, 348.39605712890625, 535, 359.2005615234375 ], "spans": [ { "bbox": [ 59.52794647216797, 348.5633544921875, 90.16719818115234, 359.108642578125 ], "content": "Results.", "score": 1, "type": "text" }, { "bbox": [ 90.16719818115234, 348.39605712890625, 535.7520141601562, 359.2005615234375 ], "content": " The collision produces a fast MHD shock, and a condensation front roughly one cooling length behind it, on each side", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 358.35906982421875, 535, 369.16357421875 ], "spans": [ { "bbox": [ 59.527950286865234, 358.35906982421875, 535.7512817382812, 369.16357421875 ], "content": "of the collision front. A cold dense layer forms behind the condensation front, onto which the gas settles, decelerating smoothly.", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 368.32208251953125, 535, 379.1265869140625 ], "spans": [ { "bbox": [ 59.527950286865234, 368.32208251953125, 535.7512817382812, 379.1265869140625 ], "content": "We find that the magnetic field lines, initially oriented parallel to the flow direction, are perturbed by the fast MHD shock, across", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 378.2840881347656, 535, 389.0885925292969 ], "spans": [ { "bbox": [ 59.527950286865234, 378.2840881347656, 535.751220703125, 389.0885925292969 ], "content": "which the magnetic field fluctuations parallel to the shock front are amplified. The downstream perturbations of the magnetic field", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 388.2471008300781, 535, 399.0516052246094 ], "spans": [ { "bbox": [ 59.527950286865234, 388.2471008300781, 180.19773864746094, 399.0516052246094 ], "content": "lines are further amplified by the", "score": 1, "type": "text" }, { "bbox": [ 180.19773864746094, 388.2471008300781, 227.1071014404297, 398.9529724121094 ], "content": " compressive", "score": 1, "type": "text" }, { "bbox": [ 227.1071014404297, 388.2471008300781, 535.7522583007812, 399.0516052246094 ], "content": " downstream velocity gradient between the shock and the condensation front caused", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 398.2101135253906, 535, 409.0146179199219 ], "spans": [ { "bbox": [ 59.5279541015625, 398.2101135253906, 535.751220703125, 409.0146179199219 ], "content": "by the settlement of the gas onto the dense layer. This mechanism causes the magnetic field to become increasingly parallel to the", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 408.172119140625, 535, 418.97662353515625 ], "spans": [ { "bbox": [ 59.5279541015625, 408.172119140625, 535.7513427734375, 418.97662353515625 ], "content": "dense layer, and the development of a shear flow around the latter. Furthermore, the bending-mode perturbations on the dense layer", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 418.1351318359375, 535, 428.93963623046875 ], "spans": [ { "bbox": [ 59.5279541015625, 418.1351318359375, 535.7510375976562, 428.93963623046875 ], "content": "are amplified by the non-linear thin-shell instability (NTSI), stretching the density structures formed by the thermal instability, and", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 428.09814453125, 535, 438.90264892578125 ], "spans": [ { "bbox": [ 59.5279541015625, 428.09814453125, 355.9569396972656, 438.90264892578125 ], "content": "rendering them parallel to the bent field lines. By extension, we suggest that a tidal", "score": 1, "type": "text" }, { "bbox": [ 355.9569396972656, 428.09814453125, 393.57122802734375, 438.80401611328125 ], "content": " stretching", "score": 1, "type": "text" }, { "bbox": [ 393.57122802734375, 428.09814453125, 535.7483520507812, 438.90264892578125 ], "content": " velocity gradient such as that produced", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 438.0601501464844, 535, 448.8646545410156 ], "spans": [ { "bbox": [ 59.5279541015625, 438.0601501464844, 535.7513427734375, 448.8646545410156 ], "content": "in gas infalling into a self-gravitating structure must straighten the field lines along the accretion flow, orienting them perpendicular", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 448.0231628417969, 535, 458.8276672363281 ], "spans": [ { "bbox": [ 59.5279541015625, 448.0231628417969, 535.7510986328125, 458.8276672363281 ], "content": "to the density structures. We also find that the upstream superalfvénic regime transitions to a transalfvénic regime between the shock", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 457.98516845703125, 535, 468.7896728515625 ], "spans": [ { "bbox": [ 59.5279541015625, 457.98516845703125, 535.7510375976562, 468.7896728515625 ], "content": "and the condensation front, and then to a subalfvénic regime inside the condensations. Finally, in two-dimensional simulations with a", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 467.94818115234375, 524.3818969726562, 478.752685546875 ], "spans": [ { "bbox": [ 59.5279541015625, 467.94818115234375, 524.3818969726562, 478.752685546875 ], "content": "curved collision front, the presence of the magnetic field inhibits the generation of turbulence by the shear around the dense layer.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 59, 477.91119384765625, 535, 498.6777038574219 ], "lines": [ { "bbox": [ 59, 477.91119384765625, 535, 488.7156982421875 ], "spans": [ { "bbox": [ 59.5279541015625, 478.0784912109375, 108.1572265625, 488.623779296875 ], "content": "Conclusions.", "score": 1, "type": "text" }, { "bbox": [ 108.1572265625, 477.91119384765625, 535.7467651367188, 488.7156982421875 ], "content": " Our results provide a feasible physical mechanism for the observed transition from parallel to perpendicular relative", "score": 1, "type": "text" } ] }, { "bbox": [ 59, 487.8731994628906, 529, 498.6777038574219 ], "spans": [ { "bbox": [ 59.5279541015625, 487.8731994628906, 528.9368286132812, 498.6777038574219 ], "content": "orientation of the magnetic field and the density structures as the density structures become increasingly dominated by self-gravity.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 59, 503.8141784667969, 420.0631103515625, 514.7141723632812 ], "lines": [ { "bbox": [ 59, 503.8141784667969, 420.0631103515625, 514.7141723632812 ], "spans": [ { "bbox": [ 59.5279541015625, 504.0155334472656, 104.37522888183594, 514.7141723632812 ], "content": "Key words.", "score": 1, "type": "text" }, { "bbox": [ 104.37522888183594, 503.8141784667969, 420.0631103515625, 514.61865234375 ], "content": " Magnetic fields – ISM: clouds –ISM: magnetic fields – ISM: kinematics and dynamics", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 38, 537, 109, 550 ], "lines": [ { "bbox": [ 36.849952697753906, 538.0780639648438, 109.05316162109375, 551.0947875976562 ], "spans": [ { "bbox": [ 36.849952697753906, 538.0780639648438, 109.05316162109375, 551.0947875976562 ], "content": "1. Introduction", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 37, 562.668701171875, 291, 760.9756469726562 ], "lines": [ { "bbox": [ 37, 562.668701171875, 291, 574.6736450195312 ], "spans": [ { "bbox": [ 36.849952697753906, 562.668701171875, 291.97222900390625, 574.6736450195312 ], "content": "Studying the role of magnetic fields in the formation and evo-", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 573.627685546875, 291, 585.6326293945312 ], "spans": [ { "bbox": [ 36.849952697753906, 573.627685546875, 291.9721984863281, 585.6326293945312 ], "content": "lution of atomic and molecular clouds (MCs) has been an im-", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 584.586669921875, 291, 596.5916137695312 ], "spans": [ { "bbox": [ 36.849952697753906, 584.586669921875, 291.97216796875, 596.5916137695312 ], "content": "portant research topic for both observational and theoretical as-", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 595.545654296875, 291, 607.5505981445312 ], "spans": [ { "bbox": [ 36.849952697753906, 595.545654296875, 291.9721374511719, 607.5505981445312 ], "content": "tronomy. Magnetic fields are thought to be an important ingre-", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 606.5046997070312, 291, 618.5096435546875 ], "spans": [ { "bbox": [ 36.849952697753906, 606.5046997070312, 291.97216796875, 618.5096435546875 ], "content": "dient in the dynamics of the ISM, providing a possible support", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 617.4636840820312, 291, 629.4686279296875 ], "spans": [ { "bbox": [ 36.849952697753906, 617.4636840820312, 291.97222900390625, 629.4686279296875 ], "content": "mechanism against gravitational collapse, and guiding the gas", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 628.4226684570312, 291, 640.4276123046875 ], "spans": [ { "bbox": [ 36.849952697753906, 628.4226684570312, 291.9721984863281, 640.4276123046875 ], "content": "flow in the surroundings of filamentary structures, among many", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 639.3817138671875, 291, 651.3866577148438 ], "spans": [ { "bbox": [ 36.849952697753906, 639.3817138671875, 65.88097381591797, 651.3866577148438 ], "content": "other e", "score": 1, "type": "text" }, { "bbox": [ 65.87995147705078, 641.0350341796875, 71.85751342773438, 650.9976196289062 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 71.85694885253906, 639.3817138671875, 291.9705810546875, 651.3866577148438 ], "content": "ects. In addition, a tight correlation between the ori-", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 650.3406982421875, 291, 662.3456420898438 ], "spans": [ { "bbox": [ 36.84994888305664, 650.3406982421875, 291.9721984863281, 662.3456420898438 ], "content": "entation of the magnetic field and cold atomic clouds (CACs)", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 661.2996826171875, 291, 673.3046264648438 ], "spans": [ { "bbox": [ 36.84994888305664, 661.2996826171875, 291.9721984863281, 673.3046264648438 ], "content": "has been identified in the last decade. For example, Clark et al.", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 672.2586669921875, 291, 684.2636108398438 ], "spans": [ { "bbox": [ 36.84994888305664, 672.2586669921875, 291.97222900390625, 684.2636108398438 ], "content": "(2015) found that the plane of the sky magnetic field, measured", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 683.2166748046875, 291, 695.2216186523438 ], "spans": [ { "bbox": [ 36.84994888305664, 683.2166748046875, 291.9721984863281, 695.2216186523438 ], "content": "using polarized thermal dust emission, is aligned with atomic", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 694.1756591796875, 291, 706.1806030273438 ], "spans": [ { "bbox": [ 36.84994888305664, 694.1756591796875, 291.97222900390625, 706.1806030273438 ], "content": "hydrogen structures detected with HI emission and Clark et al.", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 705.1346435546875, 291, 717.1395874023438 ], "spans": [ { "bbox": [ 36.84994888305664, 705.1346435546875, 234.73712158203125, 717.1395874023438 ], "content": "(2014) also observed a similar alignment in HI", "score": 1, "type": "text" }, { "bbox": [ 234.73712158203125, 705.1346435546875, 260.9491882324219, 717.0299682617188 ], "content": " fibers", "score": 1, "type": "text" }, { "bbox": [ 260.9489440917969, 705.1346435546875, 291.97247314453125, 717.1395874023438 ], "content": ", which", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 716.0936889648438, 291, 728.0986328125 ], "spans": [ { "bbox": [ 36.849945068359375, 716.0936889648438, 291.9721984863281, 728.0986328125 ], "content": "are thin long dense structures identified in HI emission using", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 727.0526733398438, 291, 739.0576171875 ], "spans": [ { "bbox": [ 36.849945068359375, 727.0526733398438, 291.9721374511719, 739.0576171875 ], "content": "the Rolling Hough transform. In addition, Planck Collabora-", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 738.0116577148438, 291, 750.0166015625 ], "spans": [ { "bbox": [ 36.849945068359375, 738.0116577148438, 291.9721374511719, 750.0166015625 ], "content": "tion et al. (2016a) found that the plane of the sky magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 37, 748.970703125, 291, 760.9756469726562 ], "spans": [ { "bbox": [ 36.849945068359375, 748.970703125, 291.97222900390625, 760.9756469726562 ], "content": "field, detected using polarized thermal dust emission, is aligned", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 538.7076416015625, 558, 550.7125854492188 ], "spans": [ { "bbox": [ 303.30694580078125, 538.7076416015625, 558.42919921875, 550.7125854492188 ], "content": "with molecular structures traced by dust, and Planck Collabo-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 549.6666870117188, 558, 561.671630859375 ], "spans": [ { "bbox": [ 303.30694580078125, 549.6666870117188, 558.4290161132812, 561.671630859375 ], "content": "ration et al. (2016b) found that the relative orientation of the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 560.6256713867188, 558, 572.630615234375 ], "spans": [ { "bbox": [ 303.30694580078125, 560.6256713867188, 558.42919921875, 572.630615234375 ], "content": "projected magnetic field and dust filaments changes from par-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 571.5846557617188, 558, 583.589599609375 ], "spans": [ { "bbox": [ 303.30694580078125, 571.5846557617188, 558.42919921875, 583.589599609375 ], "content": "allel to perpendicular when sampling higher density regions in", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 582.5426635742188, 558, 594.547607421875 ], "spans": [ { "bbox": [ 303.30694580078125, 582.5426635742188, 558.4292602539062, 594.547607421875 ], "content": "nearby MCs. Skalidis et al. (2022) studied the role of the mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 593, 558, 607.0015869140625 ], "spans": [ { "bbox": [ 303.30694580078125, 593.5016479492188, 445.662353515625, 605.506591796875 ], "content": "netic field in the transition between ", "score": 1, "type": "text" }, { "bbox": [ 445, 593, 478, 604 ], "content": "\\mathrm{HI}-\\mathrm{H}_{2}", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 477.6148376464844, 593.5016479492188, 558.4295043945312, 607.0015869140625 ], "content": " using multiple trac-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 604.460693359375, 558, 616.4656372070312 ], "spans": [ { "bbox": [ 303.3069152832031, 604.460693359375, 558.4293212890625, 616.4656372070312 ], "content": "ers to investigate the gas properties of Ursa Minor. They found", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 615.419677734375, 558, 627.4246215820312 ], "spans": [ { "bbox": [ 303.3069152832031, 615.419677734375, 558.42919921875, 627.4246215820312 ], "content": "that turbulence is transalfvénic and that the gas probably accu-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 626.378662109375, 558, 638.3836059570312 ], "spans": [ { "bbox": [ 303.3069152832031, 626.378662109375, 558.4291381835938, 638.3836059570312 ], "content": "mulates along magnetic field lines and generates overdensities", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 637.337646484375, 426.364990234375, 649.3425903320312 ], "spans": [ { "bbox": [ 303.3069152832031, 637.337646484375, 426.364990234375, 649.3425903320312 ], "content": "where molecular gas can form.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 538.7076416015625, 558, 649.3425903320312 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 303, 650.3406982421875, 558, 760.9755859375 ], "lines": [ { "bbox": [ 318.25091552734375, 650.3406982421875, 558, 662.3456420898438 ], "spans": [ { "bbox": [ 318.25091552734375, 650.3406982421875, 558.42919921875, 662.3456420898438 ], "content": "However, the origin of these alignments remains unclear, as", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 661.2996826171875, 558, 673.3046264648438 ], "spans": [ { "bbox": [ 303.3069152832031, 661.2996826171875, 558.42919921875, 673.3046264648438 ], "content": "most of the observational evidence refers to spatial and orien-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 672.2576904296875, 558, 684.2626342773438 ], "spans": [ { "bbox": [ 303.3069152832031, 672.2576904296875, 558.4290161132812, 684.2626342773438 ], "content": "tation correlations without a clear understanding of the causal-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 683.2166748046875, 558, 695.2216186523438 ], "spans": [ { "bbox": [ 303.3069152832031, 683.2166748046875, 558.4290161132812, 695.2216186523438 ], "content": "ity involved. Therefore, it is crucial to understand the interplay", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 694.1756591796875, 558, 706.1806030273438 ], "spans": [ { "bbox": [ 303.3069152832031, 694.1756591796875, 558.4293212890625, 706.1806030273438 ], "content": "between the precursors of molecular clouds (MCs) and mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 705.1346435546875, 558, 717.1395874023438 ], "spans": [ { "bbox": [ 303.3069152832031, 705.1346435546875, 558.42919921875, 717.1395874023438 ], "content": "netic fields. Since CACs are thought to constitute the primordial", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 716.0936279296875, 558, 728.0985717773438 ], "spans": [ { "bbox": [ 303.3069152832031, 716.0936279296875, 558.4290771484375, 728.0985717773438 ], "content": "place for the early stages of the evolution of molecular clouds", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 727.0526733398438, 558, 739.0576171875 ], "spans": [ { "bbox": [ 303.3069152832031, 727.0526733398438, 558.4291381835938, 739.0576171875 ], "content": "and, eventually, star-forming regions (e.g., Koyama & Inutsuka", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 738.0116577148438, 558, 750.0166015625 ], "spans": [ { "bbox": [ 303.3069152832031, 738.0116577148438, 558.4290771484375, 750.0166015625 ], "content": "2002; Audit & Hennebelle 2005; Vázquez-Semadeni et al. 2006;", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 748.9706420898438, 558, 760.9755859375 ], "spans": [ { "bbox": [ 303.3069152832031, 748.9706420898438, 558.4292602539062, 760.9755859375 ], "content": "Heitsch et al. 2006; Heiner et al. 2015; Seifried et al. 2017), un-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 56.56658935546875, 291, 68.57152557373047 ], "spans": [ { "bbox": [ 36.84999084472656, 56.56658935546875, 291.97222900390625, 68.57152557373047 ], "content": "derstanding the alignment mechanism of magnetic field lines in", "cross_page": true, "score": 1, "type": "text" } ] }, { "bbox": [ 36, 67.52557373046875, 291, 79.53050994873047 ], "spans": [ { "bbox": [ 36.84999084472656, 67.52557373046875, 291.9722595214844, 79.53050994873047 ], "content": "CACs is relevant to elucidate the role of magnetic fields in the", "cross_page": true, "score": 1, "type": "text" } ] }, { "bbox": [ 36, 78.48455810546875, 186.8269805908203, 90.48949432373047 ], "spans": [ { "bbox": [ 36.84999084472656, 78.48455810546875, 186.8269805908203, 90.48949432373047 ], "content": "formation of MCs and star formation.", "cross_page": true, "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 303, 739, 558, 759 ], "lines": [ { "bbox": [ 305.2969970703125, 736.6730346679688, 558.4263305664062, 750.7325439453125 ], "spans": [ { "bbox": [ 305.2969970703125, 739.4346923828125, 308.2857971191406, 746.6376953125 ], "content": "1", "score": 1, "type": "text" }, { "bbox": [ 308.2857971191406, 736.6730346679688, 558.4263305664062, 750.7325439453125 ], "content": " With the typographical corrections given in Vázquez-Semadeni et al.", "score": 1, "type": "text" } ] }, { "bbox": [ 303.3070068359375, 749.8910522460938, 327.2114562988281, 760.695556640625 ], "spans": [ { "bbox": [ 303.3070068359375, 749.8910522460938, 327.2114562988281, 760.695556640625 ], "content": "(2007)", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 241, 34, 354, 43 ], "lines": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "spans": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 247.45773315429688, 43.38558578491211 ], "content": "A", "score": 1, "type": "text" }, { "bbox": [ 247.45700073242188, 34.06907653808594, 254.432861328125, 43.03547668457031 ], "content": "&", "score": 1, "type": "text" }, { "bbox": [ 254.43299865722656, 32.58107376098633, 288.55010986328125, 43.38558578491211 ], "content": "A proofs:", "score": 1, "type": "text" }, { "bbox": [ 288.55010986328125, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "content": " manuscript no. aa", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 37, 771, 139, 779 ], "lines": [ { "bbox": [ 36.850006103515625, 769.8160400390625, 140.08016967773438, 780.6205444335938 ], "spans": [ { "bbox": [ 36.850006103515625, 769.8160400390625, 140.08016967773438, 780.6205444335938 ], "content": "Article number, page 2 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 1, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 36, 56.56658935546875, 291, 90.48949432373047 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 36, 89.72857666015625, 291, 200.36338806152344 ], "lines": [ { "bbox": [ 51, 89.72857666015625, 291, 101.73351287841797 ], "spans": [ { "bbox": [ 51.79399108886719, 89.72857666015625, 291.9723205566406, 101.73351287841797 ], "content": "To study this correlation statistically, Soler et al. (2013) pro-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 100.68756103515625, 291, 112.69249725341797 ], "spans": [ { "bbox": [ 36.84999084472656, 100.68756103515625, 291.97222900390625, 112.69249725341797 ], "content": "posed the histogram of relative orientations (HRO) and found", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 111.64556884765625, 291, 123.65050506591797 ], "spans": [ { "bbox": [ 36.84999084472656, 111.64556884765625, 291.97222900390625, 123.65050506591797 ], "content": "that the relative orientation of the magnetic field and isodensity", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 122.60455322265625, 291, 134.60948181152344 ], "spans": [ { "bbox": [ 36.84999084472656, 122.60455322265625, 291.9722595214844, 134.60948181152344 ], "content": "contours changes from parallel to perpendicular in a high mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 133.56353759765625, 291, 145.56846618652344 ], "spans": [ { "bbox": [ 36.84999084472656, 133.56353759765625, 79.30062866210938, 145.56846618652344 ], "content": "netization ", "score": 1, "type": "text" }, { "bbox": [ 80, 134, 116, 145 ], "content": "(\\beta\\,=\\,0.1)", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 114.49229431152344, 133.56353759765625, 291.96600341796875, 145.56846618652344 ], "content": ") computer-simulated cloud. This change of", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 144.52252197265625, 291, 156.52745056152344 ], "spans": [ { "bbox": [ 36.84999084472656, 144.52252197265625, 291.97216796875, 156.52745056152344 ], "content": "orientation was studied in Soler & Hennebelle (2017) with an", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 155.48150634765625, 291, 167.48643493652344 ], "spans": [ { "bbox": [ 36.84999084472656, 155.48150634765625, 291.9721984863281, 167.48643493652344 ], "content": "analytic approach where the authors found the parallel or anti-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 166.44049072265625, 291, 178.44541931152344 ], "spans": [ { "bbox": [ 36.84999084472656, 166.44049072265625, 69.92582702636719, 178.44541931152344 ], "content": "parallel ", "score": 1, "type": "text" }, { "bbox": [ 70, 167, 128, 178 ], "content": "(\\phi\\,=\\,0^{\\circ},180^{\\circ})", "score": 0.79, "type": "inline_equation" }, { "bbox": [ 128.53652954101562, 166.44049072265625, 207.2908935546875, 178.44541931152344 ], "content": " and perpendicular ", "score": 1, "type": "text" }, { "bbox": [ 208, 167, 246, 178 ], "content": "(\\phi\\,=\\,90^{\\circ})", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 244.50599670410156, 166.44049072265625, 291.9678039550781, 178.44541931152344 ], "content": ") configura-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 177.39947509765625, 291, 189.40440368652344 ], "spans": [ { "bbox": [ 36.84999084472656, 177.39947509765625, 291.9722595214844, 189.40440368652344 ], "content": "tions are equilibrium points. Therefore, they argue, the system", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 188.35845947265625, 167.9390106201172, 200.36338806152344 ], "spans": [ { "bbox": [ 36.84999084472656, 188.35845947265625, 129.78111267089844, 200.36338806152344 ], "content": "tends to evolve to these", "score": 1, "type": "text" }, { "bbox": [ 131, 189, 138, 200 ], "content": "\\phi", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 137.75241088867188, 188.35845947265625, 167.9390106201172, 200.36338806152344 ], "content": " values.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 199.6014404296875, 291, 288.31927490234375 ], "lines": [ { "bbox": [ 51, 199.6014404296875, 291, 211.6063690185547 ], "spans": [ { "bbox": [ 51.793983459472656, 199.6014404296875, 291.9723205566406, 211.6063690185547 ], "content": "More recently, Seifried et al. (2020) investigated the rela-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 210.5604248046875, 291, 222.5653533935547 ], "spans": [ { "bbox": [ 36.84998321533203, 210.5604248046875, 291.9722595214844, 222.5653533935547 ], "content": "tive orientation of magnetic field and three- and two-dimensional", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 221.5194091796875, 291, 233.5243377685547 ], "spans": [ { "bbox": [ 36.84998321533203, 221.5194091796875, 291.97222900390625, 233.5243377685547 ], "content": "projected structures using synthetic dust polarization maps. They", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 232.4783935546875, 291, 244.4833221435547 ], "spans": [ { "bbox": [ 36.84998321533203, 232.4783935546875, 291.97222900390625, 244.4833221435547 ], "content": "found that the magnetic field changes its orientation from paral-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 239.82135009765625, 291, 255.4423065185547 ], "spans": [ { "bbox": [ 36.84998321533203, 243.4373779296875, 124.9791259765625, 255.4423065185547 ], "content": "lel to perpendicular at", "score": 1, "type": "text" }, { "bbox": [ 126, 242, 207, 254 ], "content": "n\\approx10^{2}-\\mathrm{\\bar{10^{3}}}\\,\\mathrm{cm}^{-3}", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 206.7588653564453, 239.82135009765625, 210.073974609375, 255.4423065185547 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 210.073974609375, 243.4373779296875, 291.9665222167969, 255.4423065185547 ], "content": "in regions where the", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 254.3963623046875, 291, 266.40130615234375 ], "spans": [ { "bbox": [ 36.8499755859375, 254.3963623046875, 291.97216796875, 266.40130615234375 ], "content": "mass-to-flux ratio has values close to or below 1. In addition,", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 265.3553466796875, 291, 277.36029052734375 ], "spans": [ { "bbox": [ 36.8499755859375, 265.3553466796875, 148.72000122070312, 277.36029052734375 ], "content": "they found that projection e", "score": 1, "type": "text" }, { "bbox": [ 148.72097778320312, 267.0086669921875, 154.6985321044922, 276.9712829589844 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 154.69798278808594, 265.3553466796875, 291.9726257324219, 277.36029052734375 ], "content": "ects due to the relative orientation", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 276.3143310546875, 278.6726989746094, 288.31927490234375 ], "spans": [ { "bbox": [ 36.84998321533203, 276.3143310546875, 184.43592834472656, 288.31927490234375 ], "content": "between the cloud and the observer a", "score": 1, "type": "text" }, { "bbox": [ 184.43698120117188, 277.9676513671875, 190.41453552246094, 287.9302673339844 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 190.4139862060547, 276.3143310546875, 278.6726989746094, 288.31927490234375 ], "content": "ect the measurements.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 287.55731201171875, 291, 431.069091796875 ], "lines": [ { "bbox": [ 51, 287.55731201171875, 291, 299.562255859375 ], "spans": [ { "bbox": [ 51.79399108886719, 287.55731201171875, 291.9722900390625, 299.562255859375 ], "content": "The relative orientation of the magnetic field alignment with", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 298.51629638671875, 291, 310.521240234375 ], "spans": [ { "bbox": [ 36.84999084472656, 298.51629638671875, 291.9723205566406, 310.521240234375 ], "content": "CACs is, arguably, intrinsically related to the formation mecha-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 309.47528076171875, 291, 321.480224609375 ], "spans": [ { "bbox": [ 36.84999084472656, 309.47528076171875, 291.97222900390625, 321.480224609375 ], "content": "nism of CACs. The formation of cold atomic clouds (CACs) by", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 320.43426513671875, 291, 332.439208984375 ], "spans": [ { "bbox": [ 36.84999084472656, 320.43426513671875, 291.9722595214844, 332.439208984375 ], "content": "colliding flows with pure hydrodynamic was studied in Heitsch", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 331.39324951171875, 291, 343.398193359375 ], "spans": [ { "bbox": [ 36.84999084472656, 331.39324951171875, 291.9721984863281, 343.398193359375 ], "content": "et al. (2006), where the authors performed simulations of collid-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 342.35223388671875, 291, 354.357177734375 ], "spans": [ { "bbox": [ 36.84999084472656, 342.35223388671875, 291.97222900390625, 354.357177734375 ], "content": "ing warm neutral gas streams, including the multi-phase nature", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 353.31121826171875, 291, 365.316162109375 ], "spans": [ { "bbox": [ 36.84999084472656, 353.31121826171875, 291.9722595214844, 365.316162109375 ], "content": "of the ISM and not considering gravity nor magnetic fields. They", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 364.27020263671875, 291, 376.275146484375 ], "spans": [ { "bbox": [ 36.84999084472656, 364.27020263671875, 291.9722595214844, 376.275146484375 ], "content": "discussed three important instabilities that might play a role in", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 375.22821044921875, 291, 387.233154296875 ], "spans": [ { "bbox": [ 36.84999084472656, 375.22821044921875, 291.97222900390625, 387.233154296875 ], "content": "the formation of CACs: the thermal instability (TI), the Kelvin-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 386.18719482421875, 291, 398.192138671875 ], "spans": [ { "bbox": [ 36.84999084472656, 386.18719482421875, 291.9721984863281, 398.192138671875 ], "content": "Helmholtz instability (KHI), and the non-linear thin-shell in-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 397.14617919921875, 291, 409.151123046875 ], "spans": [ { "bbox": [ 36.84999084472656, 397.14617919921875, 291.9723205566406, 409.151123046875 ], "content": "stability (NTSI). They concluded that these instabilities break", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 408.10516357421875, 291, 420.110107421875 ], "spans": [ { "bbox": [ 36.84999084472656, 408.10516357421875, 291.9722595214844, 420.110107421875 ], "content": "up the coherent flows, seeding small-scale density perturbations", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 419.06414794921875, 274.5974426269531, 431.069091796875 ], "spans": [ { "bbox": [ 36.84999084472656, 419.06414794921875, 274.5974426269531, 431.069091796875 ], "content": "necessary for gravitational collapse and thus star formation.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 430.3081359863281, 291, 584.7779541015625 ], "lines": [ { "bbox": [ 51, 430.3081359863281, 291, 442.3130798339844 ], "spans": [ { "bbox": [ 51.79399108886719, 430.3081359863281, 291.9722595214844, 442.3130798339844 ], "content": "Hennebelle (2013) studied the formation of non-self-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 441.26715087890625, 291, 453.2720947265625 ], "spans": [ { "bbox": [ 36.84999084472656, 441.26715087890625, 291.97222900390625, 453.2720947265625 ], "content": "gravitating CACs in the ISM. This author focused on finding", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 452.22515869140625, 291, 464.2301025390625 ], "spans": [ { "bbox": [ 36.84999084472656, 452.22515869140625, 291.97222900390625, 464.2301025390625 ], "content": "the mechanism responsible for the elongation of CACs and con-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 463.18414306640625, 291, 475.1890869140625 ], "spans": [ { "bbox": [ 36.84999084472656, 463.18414306640625, 291.97222900390625, 475.1890869140625 ], "content": "cluded that the clouds are generated by the stretching induced", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 474.14312744140625, 291, 486.1480712890625 ], "spans": [ { "bbox": [ 36.84999084472656, 474.14312744140625, 291.9722900390625, 486.1480712890625 ], "content": "by turbulence because they are aligned with the strain. More-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 485.10211181640625, 291, 497.1070556640625 ], "spans": [ { "bbox": [ 36.84999084472656, 485.10211181640625, 291.97222900390625, 497.1070556640625 ], "content": "over, the author also found that the Lorentz force confines CACs.", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 496.06109619140625, 291, 508.0660400390625 ], "spans": [ { "bbox": [ 36.84999084472656, 496.06109619140625, 291.9721984863281, 508.0660400390625 ], "content": "Inoue & Inutsuka (2016), in agreement with the previous work,", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 507.02008056640625, 291, 519.0250244140625 ], "spans": [ { "bbox": [ 36.84999084472656, 507.02008056640625, 291.9721374511719, 519.0250244140625 ], "content": "found that the strain is also the origin of the magnetic field align-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 517.9790649414062, 291, 529.9840087890625 ], "spans": [ { "bbox": [ 36.84999084472656, 517.9790649414062, 291.9722595214844, 529.9840087890625 ], "content": "ment with fibers in HI clouds formed in a shock-compressed", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 528.9380493164062, 291, 540.9429931640625 ], "spans": [ { "bbox": [ 36.84999084472656, 528.9380493164062, 291.97222900390625, 540.9429931640625 ], "content": "layer using simulations resembling the local bubble. More re-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 539.8970336914062, 291, 551.9019775390625 ], "spans": [ { "bbox": [ 36.84999084472656, 539.8970336914062, 291.97216796875, 551.9019775390625 ], "content": "cently, Gazol & Villagran (2021) studied the morphology of", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 550.8560180664062, 291, 562.8609619140625 ], "spans": [ { "bbox": [ 36.84999084472656, 550.8560180664062, 291.97222900390625, 562.8609619140625 ], "content": "CACs in forced magnetized and hydrodynamical simulations,", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 561.8140258789062, 291, 573.8189697265625 ], "spans": [ { "bbox": [ 36.84999084472656, 561.8140258789062, 291.9722595214844, 573.8189697265625 ], "content": "finding that the presence of the magnetic field increases the prob-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 572.7730102539062, 149.91551208496094, 584.7779541015625 ], "spans": [ { "bbox": [ 36.84999084472656, 572.7730102539062, 149.91551208496094, 584.7779541015625 ], "content": "ability of filamentary CACs.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 584.0170288085938, 291, 650.8159790039062 ], "lines": [ { "bbox": [ 51, 584.0170288085938, 291, 596.02197265625 ], "spans": [ { "bbox": [ 51.79399108886719, 584.0170288085938, 291.9723815917969, 596.02197265625 ], "content": "A consequence of the supersonic gas streams forming CACs", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 594.9760131835938, 291, 606.98095703125 ], "spans": [ { "bbox": [ 36.84999084472656, 594.9760131835938, 291.9721984863281, 606.98095703125 ], "content": "is the formation of shocks. Shocks form wherever there are", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 605.9349975585938, 291, 617.93994140625 ], "spans": [ { "bbox": [ 36.84999084472656, 605.9349975585938, 129.21324157714844, 617.93994140625 ], "content": "supersonic velocity di", "score": 1, "type": "text" }, { "bbox": [ 129.208984375, 607.5883178710938, 135.18653869628906, 617.5509033203125 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 135.1859893798828, 605.9349975585938, 291.9674377441406, 617.93994140625 ], "content": "erences between two nearby regions.", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 616.89404296875, 291, 628.8989868164062 ], "spans": [ { "bbox": [ 36.84999084472656, 616.89404296875, 291.9722595214844, 628.8989868164062 ], "content": "Since the velocity dispersions in the neutral ISM are supersonic,", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 627.85302734375, 291, 639.8579711914062 ], "spans": [ { "bbox": [ 36.84999084472656, 627.85302734375, 291.9721984863281, 639.8579711914062 ], "content": "shocks are ubiquitous in the ISM, which, in general, produce", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 638.81103515625, 205.6861572265625, 650.8159790039062 ], "spans": [ { "bbox": [ 36.84999084472656, 638.81103515625, 205.6861572265625, 650.8159790039062 ], "content": "density fluctuations of various amplitudes.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 650.0549926757812, 291, 727.8129272460938 ], "lines": [ { "bbox": [ 51, 650.0549926757812, 291, 662.0599365234375 ], "spans": [ { "bbox": [ 51.79399108886719, 650.0549926757812, 291.9723205566406, 662.0599365234375 ], "content": "The formation of CACs out of the warm neutral medium", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 661.0140380859375, 291, 673.0189819335938 ], "spans": [ { "bbox": [ 36.84999084472656, 661.0140380859375, 291.9721984863281, 673.0189819335938 ], "content": "(WNM) in the Galactic ISM requires strong cooling in addition", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 671.9730224609375, 291, 683.9779663085938 ], "spans": [ { "bbox": [ 36.84999084472656, 671.9730224609375, 291.9721984863281, 683.9779663085938 ], "content": "to the presence of shocks. Such cooling often causes TI (Field", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 682.9320068359375, 291, 694.9369506835938 ], "spans": [ { "bbox": [ 36.84999084472656, 682.9320068359375, 291.97222900390625, 694.9369506835938 ], "content": "1965; Pikel’Ner 1968; Field et al. 1969), and in general produces", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 693.8909912109375, 291, 705.8959350585938 ], "spans": [ { "bbox": [ 36.84999084472656, 693.8909912109375, 291.97216796875, 705.8959350585938 ], "content": "large density jumps without the need for very strongly super-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 704.8499755859375, 291, 716.8549194335938 ], "spans": [ { "bbox": [ 36.84999084472656, 704.8499755859375, 291.9722595214844, 716.8549194335938 ], "content": "sonic flows (Vázquez-Semadeni et al. 1996; Vázquez-Semadeni", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 715.8079833984375, 84.44132232666016, 727.8129272460938 ], "spans": [ { "bbox": [ 36.84999084472656, 715.8079833984375, 84.44132232666016, 727.8129272460938 ], "content": "et al. 2006).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 727.052001953125, 291, 760.9749755859375 ], "lines": [ { "bbox": [ 51, 727.052001953125, 291, 739.0569458007812 ], "spans": [ { "bbox": [ 51.79399108886719, 727.052001953125, 291.9722595214844, 739.0569458007812 ], "content": "In the presence of supersonic flows and cooling, simulations", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 738.010986328125, 291, 750.0159301757812 ], "spans": [ { "bbox": [ 36.84999084472656, 738.010986328125, 291.9722595214844, 750.0159301757812 ], "content": "show that shocked unstable gas, in transition between the WNM", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 748.9700317382812, 291, 760.9749755859375 ], "spans": [ { "bbox": [ 36.84999084472656, 748.9700317382812, 291.97222900390625, 760.9749755859375 ], "content": "and the CNM, lies between the shock front and the condensation", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 56.5660400390625, 559, 68.57097625732422 ], "spans": [ { "bbox": [ 303.3070068359375, 56.5660400390625, 558.4293212890625, 68.57097625732422 ], "content": "layer and that the separation among them is due to the cooling", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 67.5250244140625, 559, 79.52996063232422 ], "spans": [ { "bbox": [ 303.3070068359375, 67.5250244140625, 558.4293823242188, 79.52996063232422 ], "content": "time necessary to produce the condensation resulting from TI.", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 78.4840087890625, 453.5331115722656, 90.48894500732422 ], "spans": [ { "bbox": [ 303.3070068359375, 78.4840087890625, 453.5331115722656, 90.48894500732422 ], "content": "(e.g., Vázquez-Semadeni et al. 2006).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 56.5660400390625, 559, 90.48894500732422 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 303, 90.93798828125, 559, 214.0258026123047 ], "lines": [ { "bbox": [ 318, 90.93798828125, 559, 102.94292449951172 ], "spans": [ { "bbox": [ 318.2510070800781, 90.93798828125, 558.429443359375, 102.94292449951172 ], "content": "In this paper, we focus on studying the alignment of mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 101.89599609375, 559, 113.90093231201172 ], "spans": [ { "bbox": [ 303.3070068359375, 101.89599609375, 558.4291381835938, 113.90093231201172 ], "content": "netic fields and filamentary CACs by following the simultane-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 112.85498046875, 559, 124.85991668701172 ], "spans": [ { "bbox": [ 303.3070068359375, 112.85498046875, 558.4291381835938, 124.85991668701172 ], "content": "ous evolution of magnetic field lines. This approach allows us to", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 123.81396484375, 559, 135.8188934326172 ], "spans": [ { "bbox": [ 303.3070068359375, 123.81396484375, 558.4293212890625, 135.8188934326172 ], "content": "understand the physical processes responsible and the role they", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 134.77294921875, 559, 146.7778778076172 ], "spans": [ { "bbox": [ 303.3070068359375, 134.77294921875, 556.7854614257812, 146.7778778076172 ], "content": "play in the alignment of magnetic fields with density structures.", "score": 1, "type": "text" } ] }, { "bbox": [ 318, 147.2269287109375, 559, 159.2318572998047 ], "spans": [ { "bbox": [ 318.2510070800781, 147.2269287109375, 558.4293823242188, 159.2318572998047 ], "content": "The paper is organized as follows. We describe the simula-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 158.1859130859375, 559, 170.1908416748047 ], "spans": [ { "bbox": [ 303.3070068359375, 158.1859130859375, 558.4291381835938, 170.1908416748047 ], "content": "tions used in this article in Section 2. In section 4, we show and", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 169.1439208984375, 559, 181.1488494873047 ], "spans": [ { "bbox": [ 303.3070068359375, 169.1439208984375, 558.42919921875, 181.1488494873047 ], "content": "explain the evolution of the 3D magnetic field lines that yield the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 180.1029052734375, 559, 192.1078338623047 ], "spans": [ { "bbox": [ 303.3070068359375, 180.1029052734375, 558.42919921875, 192.1078338623047 ], "content": "alignment of CACs with their local magnetic field. We discuss", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 191.0618896484375, 559, 203.0668182373047 ], "spans": [ { "bbox": [ 303.3070068359375, 191.0618896484375, 558.42919921875, 203.0668182373047 ], "content": "the implications of our results in Section 5. Finally, in section 6,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 202.0208740234375, 469.32379150390625, 214.0258026123047 ], "spans": [ { "bbox": [ 303.3070068359375, 202.0208740234375, 469.32379150390625, 214.0258026123047 ], "content": "we present the summary and conclusions.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 239, 465, 250 ], "lines": [ { "bbox": [ 303.3070068359375, 238.87228393554688, 465.1552734375, 251.8889617919922 ], "spans": [ { "bbox": [ 303.3070068359375, 238.87228393554688, 465.1552734375, 251.8889617919922 ], "content": "2. Cold atomic cloud simulations", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 303, 258.35089111328125, 559, 511.4515380859375 ], "lines": [ { "bbox": [ 303, 258.35089111328125, 559, 270.3558349609375 ], "spans": [ { "bbox": [ 303.3070068359375, 258.35089111328125, 558.4293212890625, 270.3558349609375 ], "content": "We have performed 2D and 3D numerical simulations of cold", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 269.30987548828125, 559, 281.3148193359375 ], "spans": [ { "bbox": [ 303.3070068359375, 269.30987548828125, 558.4291381835938, 281.3148193359375 ], "content": "atomic clouds formed by the collision of warm atomic gas flow-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 280.26885986328125, 559, 292.2738037109375 ], "spans": [ { "bbox": [ 303.3070068359375, 280.26885986328125, 355.7401123046875, 292.2738037109375 ], "content": "ing along the", "score": 1, "type": "text" }, { "bbox": [ 357, 282, 364, 290 ], "content": "x", "score": 0.77, "type": "inline_equation" }, { "bbox": [ 363.38702392578125, 280.26885986328125, 558.4248657226562, 292.2738037109375 ], "content": "-axis, and colliding at the center of the computa-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 291.22784423828125, 559, 303.2327880859375 ], "spans": [ { "bbox": [ 303.3070068359375, 291.22784423828125, 558.4293212890625, 303.2327880859375 ], "content": "tional domain. The simulations were performed using the adap-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 302.18682861328125, 559, 314.1917724609375 ], "spans": [ { "bbox": [ 303.3070068359375, 302.18682861328125, 455.0971984863281, 314.1917724609375 ], "content": "tive mesh refinement (AMR) code F", "score": 1, "type": "text" }, { "bbox": [ 455.1000061035156, 303.3537292480469, 472.8832702636719, 313.3163146972656 ], "content": "lash", "score": 1, "type": "text" }, { "bbox": [ 472.8832702636719, 302.18682861328125, 558.4229736328125, 314.1917724609375 ], "content": " version 4.5 (Fryxell", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 313.14581298828125, 559, 325.1507568359375 ], "spans": [ { "bbox": [ 303.3070068359375, 313.14581298828125, 558.4291381835938, 325.1507568359375 ], "content": "et al. 2000; Dubey et al. 2008; Dubey et al. 2009), and the ideal", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 324.10479736328125, 559, 336.1097412109375 ], "spans": [ { "bbox": [ 303.3070068359375, 324.10479736328125, 558.4292602539062, 336.1097412109375 ], "content": "MHD multi-wave HLL-type solver (Waagan et al. 2011). Since", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 335.06280517578125, 559, 347.0677490234375 ], "spans": [ { "bbox": [ 303.3070068359375, 335.06280517578125, 558.42919921875, 347.0677490234375 ], "content": "our goal is to study the alignment of the magnetic field with", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 346.02178955078125, 559, 358.0267333984375 ], "spans": [ { "bbox": [ 303.3070068359375, 346.02178955078125, 558.42919921875, 358.0267333984375 ], "content": "CACs before self-gravity becomes dominant, neither self-gravity", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 356.98077392578125, 559, 368.9857177734375 ], "spans": [ { "bbox": [ 303.3070068359375, 356.98077392578125, 558.428955078125, 368.9857177734375 ], "content": "nor any external gravitational potential is included in these sim-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 367.93975830078125, 559, 379.9447021484375 ], "spans": [ { "bbox": [ 303.3070068359375, 367.93975830078125, 558.4293212890625, 379.9447021484375 ], "content": "ulations. These simulations consider inflow boundary condi-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 378.89874267578125, 559, 390.9036865234375 ], "spans": [ { "bbox": [ 303.3070068359375, 378.89874267578125, 347.979248046875, 390.9036865234375 ], "content": "tions in the", "score": 1, "type": "text" }, { "bbox": [ 349, 380, 357, 389 ], "content": "x", "score": 0.76, "type": "inline_equation" }, { "bbox": [ 358.3030090332031, 378.89874267578125, 558.421630859375, 390.9036865234375 ], "content": "direction, and periodic boundary conditions in the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 389.85772705078125, 559, 401.8626708984375 ], "spans": [ { "bbox": [ 303.3070068359375, 389.85772705078125, 558.4290161132812, 401.8626708984375 ], "content": "other directions. The initial conditions for both kinds of simu-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 400.81671142578125, 559, 412.8216552734375 ], "spans": [ { "bbox": [ 303.3070068359375, 400.81671142578125, 558.42919921875, 412.8216552734375 ], "content": "lations consist of gas in thermal equilibrium with temperature", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 407.7427062988281, 559, 424 ], "spans": [ { "bbox": [ 303, 412, 371, 423 ], "content": "T_{0}=5006.25\\,^{\\circ}\\mathrm{K}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 370.3069763183594, 411.77569580078125, 468.6976013183594, 423.7806396484375 ], "content": ", implying a sound speed", "score": 1, "type": "text" }, { "bbox": [ 468.6976013183594, 411.77569580078125, 470.9539794921875, 423.6710510253906 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 470, 411, 544, 424 ], "content": "c_{\\mathrm{s},0}=7.36~\\mathrm{km}\\,\\mathrm{s}^{-1}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 544.057861328125, 407.7427062988281, 546.8089599609375, 423.7806396484375 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 546.8089599609375, 411.77569580078125, 558.4254150390625, 423.7806396484375 ], "content": "for", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 422.73468017578125, 559, 434.7396240234375 ], "spans": [ { "bbox": [ 303.30694580078125, 422.73468017578125, 397.134765625, 434.7396240234375 ], "content": "a mean particle mass of ", "score": 1, "type": "text" }, { "bbox": [ 397, 423, 427, 433 ], "content": "1.27m_{\\mathrm{H}}", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 427.2909240722656, 422.73468017578125, 558.4287719726562, 434.7396240234375 ], "content": ", and an atomic hydrogen number", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 433, 559, 445.6986083984375 ], "spans": [ { "bbox": [ 303.3069152832031, 433.69366455078125, 332.0888366699219, 445.6986083984375 ], "content": "density", "score": 1, "type": "text" }, { "bbox": [ 333, 433, 389, 445 ], "content": "\\dot{n}_{H,0}=1\\,\\mathrm{cm}^{-3}", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 389.3669128417969, 433.69366455078125, 558.4223022460938, 445.6986083984375 ], "content": ". For the 3D simulation, the box size of the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 444.65167236328125, 559, 456.6566162109375 ], "spans": [ { "bbox": [ 303.3069152832031, 444.65167236328125, 354.2356872558594, 456.6566162109375 ], "content": "simulation is", "score": 1, "type": "text" }, { "bbox": [ 355, 445, 385, 455 ], "content": "L=64", "score": 0.68, "type": "inline_equation" }, { "bbox": [ 385.7642517089844, 444.65167236328125, 508.0650329589844, 456.6566162109375 ], "content": "pc and the highest resolution is", "score": 1, "type": "text" }, { "bbox": [ 509, 445, 557, 455 ], "content": "0.03125~\\mathrm{pc}", "score": 0.32, "type": "inline_equation" }, { "bbox": [ 555.9354858398438, 444.65167236328125, 558.4261474609375, 456.6566162109375 ], "content": ".", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 455.61065673828125, 559, 467.6156005859375 ], "spans": [ { "bbox": [ 303.3069152832031, 455.61065673828125, 441.99615478515625, 467.6156005859375 ], "content": "The gas inside a cylinder of radius", "score": 1, "type": "text" }, { "bbox": [ 443, 456, 485, 467 ], "content": "R=16\\,\\mathrm{{pc}}", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 484.7799377441406, 455.61065673828125, 514.9367065429688, 467.6156005859375 ], "content": ", length", "score": 1, "type": "text" }, { "bbox": [ 514.9367065429688, 457.0379333496094, 517.7078857421875, 467.0005187988281 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 517, 456, 556, 467 ], "content": "\\ell=64\\,\\mathrm{pc}", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 555.93701171875, 455.61065673828125, 558.4276733398438, 467.6156005859375 ], "content": ",", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 466.56964111328125, 559, 478.5745849609375 ], "spans": [ { "bbox": [ 303.306884765625, 466.56964111328125, 558.428955078125, 478.5745849609375 ], "content": "and centered in the middle of the computational domain, has a", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 473.4956359863281, 535.7941284179688, 489.5335693359375 ], "spans": [ { "bbox": [ 303.306884765625, 477.52862548828125, 335.25689697265625, 489.5335693359375 ], "content": "velocity", "score": 1, "type": "text" }, { "bbox": [ 335.25689697265625, 477.52862548828125, 337.9588928222656, 489.4239807128906 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 337, 477, 412, 489 ], "content": "u_{0}=\\pm14.7\\,\\mathrm{km\\,s^{-1}}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 412.0307922363281, 473.4956359863281, 415.2298889160156, 489.5335693359375 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 415.2298889160156, 477.52862548828125, 452.24090576171875, 489.5335693359375 ], "content": "along the", "score": 1, "type": "text" }, { "bbox": [ 452.24090576171875, 477.52862548828125, 455.4429016113281, 489.4239807128906 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 454, 479, 461, 487 ], "content": "x", "score": 0.75, "type": "inline_equation" }, { "bbox": [ 459.8663024902344, 477.52862548828125, 535.7941284179688, 489.5335693359375 ], "content": " direction, with the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 488.48760986328125, 559, 500.4925537109375 ], "spans": [ { "bbox": [ 303.306884765625, 488.48760986328125, 534.598388671875, 500.4925537109375 ], "content": "tive and negative values applying to the left and right of the", "score": 1, "type": "text" }, { "bbox": [ 534.598388671875, 488.48760986328125, 541.5432739257812, 500.3829650878906 ], "content": " x", "score": 1, "type": "text" }, { "bbox": [ 536, 489, 559, 498 ], "content": "x=0", "score": 0.9, "type": "inline_equation" } ] }, { "bbox": [ 303, 499.44659423828125, 379.45098876953125, 511.4515380859375 ], "spans": [ { "bbox": [ 303.3068542480469, 499.44659423828125, 379.45098876953125, 511.4515380859375 ], "content": "plane, respectively.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 511.89959716796875, 559, 692.2505493164062 ], "lines": [ { "bbox": [ 318, 511.89959716796875, 559, 523.904541015625 ], "spans": [ { "bbox": [ 318.2508544921875, 511.89959716796875, 479.0671081542969, 523.904541015625 ], "content": "For the 2D simulation, the box size is", "score": 1, "type": "text" }, { "bbox": [ 479.0671081542969, 511.89959716796875, 483.4498596191406, 523.794921875 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 482, 512, 528, 523 ], "content": "L~=~20\\,\\mathrm{pc}", "score": 0.86, "type": "inline_equation" }, { "bbox": [ 528.0169677734375, 511.89959716796875, 558.4227905273438, 523.904541015625 ], "content": " with a", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 522.8585815429688, 559, 534.863525390625 ], "spans": [ { "bbox": [ 303.306884765625, 522.8585815429688, 558.4290771484375, 534.863525390625 ], "content": "uniform grid and 512 cells per dimension, resulting in a reso-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 533.8175659179688, 559, 545.822509765625 ], "spans": [ { "bbox": [ 303.306884765625, 533.8175659179688, 446.2601013183594, 545.822509765625 ], "content": "lution of 0.039 pc, and the main di", "score": 1, "type": "text" }, { "bbox": [ 446.2598876953125, 535.4708862304688, 452.2374572753906, 545.4334716796875 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 452.2378845214844, 533.8175659179688, 558.42919921875, 545.822509765625 ], "content": "erence is that the collision", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 544.7765502929688, 559, 556.781494140625 ], "spans": [ { "bbox": [ 303.306884765625, 544.7765502929688, 558.4290771484375, 556.781494140625 ], "content": "front in this simulation has a sinusoidal shape, in order to trigger", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 555.7355346679688, 559, 567.740478515625 ], "spans": [ { "bbox": [ 303.306884765625, 555.7355346679688, 558.428955078125, 567.740478515625 ], "content": "the nonlinear thin-shell instability (NTSI) described in Vishniac", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 566.6945190429688, 559, 578.699462890625 ], "spans": [ { "bbox": [ 303.306884765625, 566.6945190429688, 558.4290771484375, 578.699462890625 ], "content": "(1994). This interface is accomplished by requiring that simula-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 577, 559, 592 ], "spans": [ { "bbox": [ 303.306884765625, 579.3465576171875, 365.0251159667969, 591.3515014648438 ], "content": "tion points with", "score": 1, "type": "text" }, { "bbox": [ 366, 577, 429, 591 ], "content": "\\begin{array}{r}{x<3.0\\sin(\\frac{8\\pi y}{20})}\\end{array}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 425.6000061035156, 579.3485717773438, 456.4342346191406, 591.353515625 ], "content": ") pc and", "score": 1, "type": "text" }, { "bbox": [ 457, 578, 521, 592 ], "content": "\\begin{array}{r}{x>3.0\\sin(\\frac{8\\pi y}{20})}\\end{array}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 517.0180053710938, 579.3485717773438, 558.4226684570312, 591.353515625 ], "content": ") pc have a", "score": 1, "type": "text" } ] }, { "bbox": [ 415.79901123046875, 585.5472412109375, 422.7728271484375, 593.95068359375 ], "spans": [ { "bbox": [ 415.79901123046875, 585.5472412109375, 422.7728271484375, 593.95068359375 ], "content": "20", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 588.5415649414062, 559, 604.5785522460938 ], "spans": [ { "bbox": [ 303.3070068359375, 592.5736083984375, 335.25701904296875, 604.5785522460938 ], "content": "velocity", "score": 1, "type": "text" }, { "bbox": [ 335.25701904296875, 592.5736083984375, 338.02301025390625, 604.4689331054688 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 337, 592, 413, 604 ], "content": "u_{0}=\\pm14.7\\,\\mathrm{km\\,s^{-1}}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 412.3329162597656, 588.5415649414062, 415.5970153808594, 604.5785522460938 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 415.5970153808594, 592.5736083984375, 558.4208374023438, 604.5785522460938 ], "content": "respectively. In addition, for the 3D", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 603.5325927734375, 559, 615.5375366210938 ], "spans": [ { "bbox": [ 303.3070068359375, 603.5325927734375, 558.4293823242188, 615.5375366210938 ], "content": "simulation, we add to each velocity component a pseudo-random", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 614.4915771484375, 559, 626.4965209960938 ], "spans": [ { "bbox": [ 303.3070068359375, 614.4915771484375, 558.4290771484375, 626.4965209960938 ], "content": "velocity fluctuation obtained from a Gaussian distribution with", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 625, 559, 637.4555053710938 ], "spans": [ { "bbox": [ 303.3070068359375, 625.4505615234375, 464.5815124511719, 637.4555053710938 ], "content": "zero mean and a standard deviation of ", "score": 1, "type": "text" }, { "bbox": [ 463, 625, 511, 636 ], "content": "2.85\\,\\mathrm{km}\\;\\mathrm{s}^{-1}", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 511.197021484375, 625.4505615234375, 558.4297485351562, 637.4555053710938 ], "content": ". These ini-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 636, 559, 648.4144897460938 ], "spans": [ { "bbox": [ 303.3070068359375, 636.4095458984375, 499.58001708984375, 648.4144897460938 ], "content": "tial conditions imply an initial Mach number of", "score": 1, "type": "text" }, { "bbox": [ 499.58001708984375, 636.4095458984375, 503.6050109863281, 648.3048706054688 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 502, 636, 544, 647 ], "content": "M_{\\mathrm{s}}~\\approx~2.0", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 543.2803344726562, 636.4095458984375, 558.4235229492188, 648.4144897460938 ], "content": " for", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 647.3685913085938, 559, 659.37353515625 ], "spans": [ { "bbox": [ 303.3070068359375, 647.3685913085938, 558.4291381835938, 659.37353515625 ], "content": "both the 2D and 3D simulations. Furthermore, both simulations", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 658.3275756835938, 559, 670.33251953125 ], "spans": [ { "bbox": [ 303.3070068359375, 658.3275756835938, 558.4292602539062, 670.33251953125 ], "content": "incorporate the multi-phase nature of the interstellar medium by", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 669.2865600585938, 559, 681.29150390625 ], "spans": [ { "bbox": [ 303.3070068359375, 669.2865600585938, 558.4290771484375, 681.29150390625 ], "content": "including the net cooling function provided in Koyama & Inut-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 680, 357.09564208984375, 692.2505493164062 ], "spans": [ { "bbox": [ 303.3070068359375, 680.24560546875, 324.0591125488281, 692.2505493164062 ], "content": "suka ", "score": 1, "type": "text" }, { "bbox": [ 323, 680, 354, 692 ], "content": "(2\\breve{00}2)^{1}", "score": 0.48, "type": "inline_equation" }, { "bbox": [ 354.60498046875, 680.24560546875, 357.09564208984375, 692.2505493164062 ], "content": ".", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 692.6986083984375, 559, 726.6215209960938 ], "lines": [ { "bbox": [ 318, 692.6986083984375, 559, 704.7035522460938 ], "spans": [ { "bbox": [ 318.2509765625, 692.6986083984375, 434.0362854003906, 704.7035522460938 ], "content": "The initial magnetic field is", "score": 1, "type": "text" }, { "bbox": [ 434.0362854003906, 692.6986083984375, 438.43096923828125, 704.5939331054688 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 437, 693, 486, 704 ], "content": "\\mathit{B}_{0}~=~3\\,\\mu\\mathrm{G}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 485.1809387207031, 692.6986083984375, 527.5718383789062, 704.7035522460938 ], "content": " along the", "score": 1, "type": "text" }, { "bbox": [ 527.5718383789062, 692.6986083984375, 532.1139526367188, 704.5939331054688 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 530, 695, 537, 703 ], "content": "x", "score": 0.74, "type": "inline_equation" }, { "bbox": [ 536.5669555664062, 692.6986083984375, 558.4249267578125, 704.7035522460938 ], "content": "-axis,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 699.6245727539062, 559, 715.6625366210938 ], "spans": [ { "bbox": [ 303.30694580078125, 703.6575927734375, 452.0683288574219, 715.6625366210938 ], "content": "implying an initial Alfvén speed of ", "score": 1, "type": "text" }, { "bbox": [ 451, 703, 499, 714 ], "content": "6.54\\,\\mathrm{km}\\,\\mathrm{s}^{-1}", "score": 0.86, "type": "inline_equation" }, { "bbox": [ 498.1858825683594, 699.6245727539062, 502.261962890625, 715.6625366210938 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 502.261962890625, 703.6575927734375, 558.4212036132812, 715.6625366210938 ], "content": "and an inflow", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 714.6165771484375, 559, 726.6215209960938 ], "spans": [ { "bbox": [ 303.30694580078125, 714.6165771484375, 410.27532958984375, 726.6215209960938 ], "content": "Alfvénic Mach number of", "score": 1, "type": "text" }, { "bbox": [ 410.27532958984375, 714.6165771484375, 414.33294677734375, 726.5119018554688 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 413, 715, 465, 726 ], "content": "M_{\\mathrm{A}}~\\approx~2.25", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 455.0389404296875, 714.6165771484375, 558.4209594726562, 726.6215209960938 ], "content": "25. The magnetization of", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 56.56658935546875, 190.52383422851562, 68.57152557373047 ], "spans": [ { "bbox": [ 36.84999084472656, 56.56658935546875, 172.1819305419922, 68.57152557373047 ], "content": "this simulation results in a plasma", "cross_page": true, "score": 1, "type": "text" }, { "bbox": [ 172, 57, 180, 68 ], "content": "\\beta", "cross_page": true, "score": 0.86, "type": "inline_equation" }, { "bbox": [ 179.73500061035156, 56.56658935546875, 190.52383422851562, 68.57152557373047 ], "content": " of", "cross_page": true, "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 36, 700, 292, 760 ], "lines": [ { "bbox": [ 38.84000015258789, 696.5070190429688, 291.97021484375, 710.5665283203125 ], "spans": [ { "bbox": [ 38.84000015258789, 699.2686767578125, 41.828800201416016, 706.4716796875 ], "content": "2", "score": 1, "type": "text" }, { "bbox": [ 41.828800201416016, 696.5070190429688, 291.97021484375, 710.5665283203125 ], "content": " This and the other three-dimensional figures were done with the help", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 709.7240600585938, 179.613037109375, 720.528564453125 ], "spans": [ { "bbox": [ 36.849998474121094, 709.7240600585938, 179.613037109375, 720.528564453125 ], "content": "of Pyvista (Sullivan & Kaszynski 2019)", "score": 1, "type": "text" } ] }, { "bbox": [ 38.84000015258789, 716.748046875, 291.9703063964844, 730.8075561523438 ], "spans": [ { "bbox": [ 38.84000015258789, 719.5097045898438, 41.828800201416016, 726.7127075195312 ], "content": "3", "score": 1, "type": "text" }, { "bbox": [ 41.828800201416016, 716.748046875, 291.9703063964844, 730.8075561523438 ], "content": " Note that in this study, we focus in simulations and do not explore", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 729.9660034179688, 291.96661376953125, 740.7705078125 ], "spans": [ { "bbox": [ 36.849998474121094, 729.9660034179688, 54.388282775878906, 740.7705078125 ], "content": "the e", "score": 1, "type": "text" }, { "bbox": [ 54.391998291015625, 731.4540405273438, 59.7718391418457, 740.42041015625 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 59.77199935913086, 729.9660034179688, 141.06137084960938, 740.7705078125 ], "content": "ects of observational e", "score": 1, "type": "text" }, { "bbox": [ 141.06199645996094, 731.4540405273438, 146.44183349609375, 740.42041015625 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 146.44200134277344, 729.9660034179688, 291.96661376953125, 740.7705078125 ], "content": "ects like the constraint of only detecting", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 739.9280395507812, 291.970947265625, 750.7325439453125 ], "spans": [ { "bbox": [ 36.849998474121094, 739.9280395507812, 291.970947265625, 750.7325439453125 ], "content": "the plane of the sky magnetic field and the relative orientation between", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 749.8910522460938, 133.57952880859375, 760.695556640625 ], "spans": [ { "bbox": [ 36.849998474121094, 749.8910522460938, 133.57952880859375, 760.695556640625 ], "content": "the observer and the cloud.", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 174, 33, 421, 43 ], "lines": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "spans": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "content": "Granda-Muñoz et al.: Magnetic field alignment in interstellar clouds", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 456, 771, 558, 779 ], "lines": [ { "bbox": [ 455.1949157714844, 769.8156127929688, 558.4251098632812, 780.6201171875 ], "spans": [ { "bbox": [ 455.1949157714844, 769.8156127929688, 558.4251098632812, 780.6201171875 ], "content": "Article number, page 3 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 2, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 35, 56.56658935546875, 190.52383422851562, 68.57152557373047 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 34, 75, 136, 106 ], "lines": [ { "bbox": [ 34, 75, 136, 106 ], "spans": [ { "bbox": [ 34, 75, 136, 106 ], "content": "\\beta\\equiv{\\frac{P_{\\mathrm{th}}}{P_{\\mathrm{mag}}}}={\\frac{2c_{\\mathrm{s}}^{2}}{u_{\\mathrm{A}}^{2}}}=2.54.", "score": 0.93, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 35, 113.78759765625, 291, 158.6685028076172 ], "lines": [ { "bbox": [ 35, 113.78759765625, 291, 125.79253387451172 ], "spans": [ { "bbox": [ 36.84999084472656, 113.78759765625, 74.61820220947266, 125.79253387451172 ], "content": "Note that", "score": 1, "type": "text" }, { "bbox": [ 76, 114, 84, 125 ], "content": "\\beta", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 83.12799072265625, 113.78759765625, 291.9689636230469, 125.79253387451172 ], "content": " is formally defined as the ratio of the thermal and", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 124.74560546875, 291, 136.7505340576172 ], "spans": [ { "bbox": [ 36.8499870300293, 124.74560546875, 291.9721984863281, 136.7505340576172 ], "content": "magnetic pressures, which introduces the factor of 2 in the nu-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 135.70458984375, 291, 147.7095184326172 ], "spans": [ { "bbox": [ 36.8499870300293, 135.70458984375, 291.97222900390625, 147.7095184326172 ], "content": "merator. However, this additional factor is often omitted in the", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 146.66357421875, 75.30561828613281, 158.6685028076172 ], "spans": [ { "bbox": [ 36.8499870300293, 146.66357421875, 75.30561828613281, 158.6685028076172 ], "content": "literature.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 35, 158.00054931640625, 291, 290.5533447265625 ], "lines": [ { "bbox": [ 51, 158.00054931640625, 291, 170.00547790527344 ], "spans": [ { "bbox": [ 51.79398727416992, 158.00054931640625, 291.9723205566406, 170.00547790527344 ], "content": "Therefore, the initial condition of this simulation is super-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 168.95953369140625, 291, 180.96446228027344 ], "spans": [ { "bbox": [ 36.8499870300293, 168.95953369140625, 291.9721984863281, 180.96446228027344 ], "content": "sonic, superalfvénic, and with intermediate magnetization. In", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 179.91851806640625, 291, 191.92344665527344 ], "spans": [ { "bbox": [ 36.8499870300293, 179.91851806640625, 291.9721984863281, 191.92344665527344 ], "content": "Figure 1, we show face-on and edge-on column densities of", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 190.87750244140625, 291, 202.88243103027344 ], "spans": [ { "bbox": [ 36.8499870300293, 190.87750244140625, 291.9721984863281, 202.88243103027344 ], "content": "the resulting evolution after 5 Myr. In the following discussion,", "score": 1, "type": "text" } ] }, { "bbox": [ 99.21585083007812, 201.83648681640625, 291, 213.84141540527344 ], "spans": [ { "bbox": [ 99.21585083007812, 201.83648681640625, 138.69764709472656, 213.84141540527344 ], "content": " white re", "score": 1, "type": "text" }, { "bbox": [ 194.63763427734375, 201.83648681640625, 202.38853454589844, 213.84141540527344 ], "content": "in", "score": 1, "type": "text" }, { "bbox": [ 202.38853454589844, 201.83648681640625, 207.69198608398438, 213.73182678222656 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 206, 202, 274, 213 ], "content": "x~\\in~[-3.0,3.0]", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 273.60980224609375, 201.83648681640625, 291.97088623046875, 213.84141540527344 ], "content": " pc,", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 212.79547119140625, 291, 231.40560913085938 ], "spans": [ { "bbox": [ 35, 213, 100, 224 ], "content": "y~\\in~[-1.0,3.0]", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 41.27336883544922, 213.37330627441406, 52.29393005371094, 231.40560913085938 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 61.29197692871094, 213.37330627441406, 67.62818908691406, 231.40560913085938 ], "content": "−", "score": 1, "type": "text" }, { "bbox": [ 91.7039794921875, 212.79547119140625, 136.07737731933594, 224.80039978027344 ], "content": "0] pc, and", "score": 1, "type": "text" }, { "bbox": [ 138, 213, 196, 224 ], "content": "z~\\in~[2.3,6.3]", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 144.01243591308594, 213.37330627441406, 155.03292846679688, 231.40560913085938 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 188.1069793701172, 212.79547119140625, 291.967041015625, 224.80039978027344 ], "content": "3] pc will be referred to", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 223.75445556640625, 291, 235.75938415527344 ], "spans": [ { "bbox": [ 36.8499755859375, 223.75445556640625, 291.9722595214844, 235.75938415527344 ], "content": "as R1, whose three-dimensional density structure and magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 231.096435546875, 291, 246.71836853027344 ], "spans": [ { "bbox": [ 36.8499755859375, 234.71343994140625, 168.80458068847656, 246.71836853027344 ], "content": "field lines are shown in Figure 2,", "score": 1, "type": "text" }, { "bbox": [ 172.2898712158203, 231.096435546875, 175.49798583984375, 246.71836853027344 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 175.49798583984375, 234.71343994140625, 291.970703125, 246.71836853027344 ], "content": "in which the shock fronts are", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 245.67242431640625, 291, 257.6773681640625 ], "spans": [ { "bbox": [ 36.84999084472656, 245.67242431640625, 291.9723205566406, 257.6773681640625 ], "content": "visible as shaded vertical sheets. We note that the magnetic field", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 256.63140869140625, 291, 268.6363525390625 ], "spans": [ { "bbox": [ 36.84999084472656, 256.63140869140625, 291.9721984863281, 268.6363525390625 ], "content": "lines start to bend at the shock fronts. Additionally, the magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 267.58941650390625, 291, 279.5943603515625 ], "spans": [ { "bbox": [ 36.84999084472656, 267.58941650390625, 291.97222900390625, 279.5943603515625 ], "content": "field has become almost perpendicular to its original orientation", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 278.54840087890625, 135.72882080078125, 290.5533447265625 ], "spans": [ { "bbox": [ 36.84999084472656, 278.54840087890625, 40.167537689208984, 290.5533447265625 ], "content": "(", "score": 1, "type": "text" }, { "bbox": [ 39, 280, 45, 288 ], "content": "\\cdot_{x}", "score": 0.62, "type": "inline_equation" }, { "bbox": [ 45.11899185180664, 278.54840087890625, 135.72882080078125, 290.5533447265625 ], "content": "-axis) in some regions.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 310, 259, 334 ], "lines": [ { "bbox": [ 36.84999084472656, 309.8177795410156, 258.9005432128906, 322.83447265625 ], "spans": [ { "bbox": [ 36.84999084472656, 309.8177795410156, 258.9005432128906, 322.83447265625 ], "content": "3. Alignment of magnetic field lines with cold", "score": 1, "type": "text" } ] }, { "bbox": [ 48.81098937988281, 322.769775390625, 118.28856658935547, 335.78643798828125 ], "spans": [ { "bbox": [ 48.81098937988281, 322.769775390625, 118.28856658935547, 335.78643798828125 ], "content": "atomic clouds", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 35, 341.13238525390625, 291, 550.3970947265625 ], "lines": [ { "bbox": [ 35, 341.13238525390625, 291, 353.1373291015625 ], "spans": [ { "bbox": [ 36.84999084472656, 341.13238525390625, 274.866455078125, 353.1373291015625 ], "content": "To quantify the alignment of magnetic field lines, we use the", "score": 1, "type": "text" }, { "bbox": [ 274.866455078125, 341.13238525390625, 291.9688720703125, 353.0277404785156 ], "content": " his-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 352.09136962890625, 291, 364.0963134765625 ], "spans": [ { "bbox": [ 36.84999084472656, 352.09136962890625, 159.99766540527344, 363.9867248535156 ], "content": "togram of relative orientations", "score": 1, "type": "text" }, { "bbox": [ 159.99766540527344, 352.09136962890625, 291.96636962890625, 364.0963134765625 ], "content": " (HRO; Soler et al. 2013), which", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 363, 291, 375.0552978515625 ], "spans": [ { "bbox": [ 36.849998474121094, 363.05035400390625, 203.5740966796875, 375.0552978515625 ], "content": "is a statistical tool to measure the angle ", "score": 1, "type": "text" }, { "bbox": [ 202, 363, 216, 375 ], "content": "(\\phi)", "score": 0.77, "type": "inline_equation" }, { "bbox": [ 215.69354248046875, 363.05035400390625, 291.96722412109375, 375.0552978515625 ], "content": " between the mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 374.00933837890625, 291, 386.0142822265625 ], "spans": [ { "bbox": [ 36.84999084472656, 374.00933837890625, 291.9722900390625, 386.0142822265625 ], "content": "netic field and the density gradient of structures in the ISM, over", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 381.351318359375, 291, 396.9732666015625 ], "spans": [ { "bbox": [ 36.84999084472656, 384.96832275390625, 136.6553192138672, 396.9732666015625 ], "content": "number density intervals", "score": 1, "type": "text" }, { "bbox": [ 136.65499877929688, 384.11297607421875, 140.1418914794922, 392.5163879394531 ], "content": "3", "score": 1, "type": "text" }, { "bbox": [ 140.1418914794922, 381.351318359375, 143.90199279785156, 396.9732666015625 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 143.90199279785156, 384.96832275390625, 291.9661560058594, 396.9732666015625 ], "content": "relevant to the multi-phase nature of", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 395.92633056640625, 291, 407.9312744140625 ], "spans": [ { "bbox": [ 36.84999084472656, 395.92633056640625, 291.9722595214844, 407.9312744140625 ], "content": "CACs. These intervals comprise the densities of the post-shock", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 406, 291, 418.8902587890625 ], "spans": [ { "bbox": [ 36.84999084472656, 406.88531494140625, 83.08641052246094, 418.8902587890625 ], "content": "warm neutr", "score": 1, "type": "text" }, { "bbox": [ 129, 406, 202, 417 ], "content": "\\bar{(n\\in[3,10]\\ \\mathrm{cm}^{-3})}", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 200.50498962402344, 406.88531494140625, 291.9715881347656, 418.8902587890625 ], "content": "), the low-density cold", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 417, 291, 429.8492431640625 ], "spans": [ { "bbox": [ 36.84999084472656, 417.84429931640625, 81.05404663085938, 429.8492431640625 ], "content": "neutral gas", "score": 1, "type": "text" }, { "bbox": [ 83, 417, 183, 429 ], "content": "(n\\,\\in\\,[10,3\\times10^{1}]\\;\\mathrm{cm}^{-3})", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 182.13999938964844, 417.84429931640625, 291.9676818847656, 429.8492431640625 ], "content": "), the medium-density cold", "score": 1, "type": "text" } ] }, { "bbox": [ 82, 428.80328369140625, 291, 440.8082275390625 ], "spans": [ { "bbox": [ 82, 429, 178, 439 ], "content": "(n\\in[3{\\times}10^{1},10^{2}]\\,\\mathrm{cm}^{-3})", "score": 0.84, "type": "inline_equation" }, { "bbox": [ 175.00701904296875, 428.80328369140625, 291.9678955078125, 440.8082275390625 ], "content": "), the high-density neutral gas", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 439, 291, 458.3724060058594 ], "spans": [ { "bbox": [ 36, 439, 133, 451 ], "content": "(n\\in[10^{2},3\\times10^{2}]\\,\\mathrm{cm}^{-3})", "score": 0.86, "type": "inline_equation" }, { "bbox": [ 45.149322509765625, 440.340087890625, 53.25697708129883, 458.3724060058594 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 154.26364135742188, 439.76226806640625, 291.9666442871094, 451.7672119140625 ], "content": " the density range of the central re-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 450.72125244140625, 291, 469.3313903808594 ], "spans": [ { "bbox": [ 36.85002136230469, 450.72125244140625, 59.98318099975586, 462.7261962890625 ], "content": "gion (", "score": 1, "type": "text" }, { "bbox": [ 56, 451, 152, 462 ], "content": "(n\\in[3{\\times}10^{2},10^{3}]\\,\\mathrm{cm}^{-3})", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 64.96131896972656, 451.299072265625, 73.0689697265625, 469.3313903808594 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 84.89701843261719, 451.299072265625, 91.23323059082031, 469.3313903808594 ], "content": "×", "score": 1, "type": "text" }, { "bbox": [ 150.0530242919922, 450.72125244140625, 167.36802673339844, 462.7261962890625 ], "content": "). W", "score": 1, "type": "text" }, { "bbox": [ 186.6855010986328, 450.72125244140625, 235.15357971191406, 462.7261962890625 ], "content": "w the resulti", "score": 1, "type": "text" }, { "bbox": [ 272.7125549316406, 450.72125244140625, 291.9702453613281, 462.7261962890625 ], "content": "n the", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 461.68023681640625, 291, 473.6851806640625 ], "spans": [ { "bbox": [ 36.85002136230469, 461.68023681640625, 178.42855834960938, 473.6851806640625 ], "content": "left panel of Figure 3 in terms of cos", "score": 1, "type": "text" }, { "bbox": [ 185.56402587890625, 461.68023681640625, 251.31716918945312, 473.6851806640625 ], "content": ". Thus, when cos", "score": 1, "type": "text" }, { "bbox": [ 237, 462, 275, 473 ], "content": "\\cos\\phi=0", "score": 0.73, "type": "inline_equation" }, { "bbox": [ 267.56024169921875, 461.68023681640625, 291.9657897949219, 473.6851806640625 ], "content": " 0, the", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 472.63922119140625, 291, 484.6441650390625 ], "spans": [ { "bbox": [ 36.85002136230469, 472.63922119140625, 291.9722595214844, 484.6441650390625 ], "content": "magnetic field is parallel to the density isocontours, while, when", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 483.59820556640625, 291, 495.6031494140625 ], "spans": [ { "bbox": [ 36, 484, 84, 495 ], "content": "\\cos\\phi\\;=\\;\\pm1", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 84.43132781982422, 483.59820556640625, 291.9721984863281, 495.6031494140625 ], "content": ", the magnetic field is perpendicular to the density", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 494.55718994140625, 291, 506.5621337890625 ], "spans": [ { "bbox": [ 36.85002899169922, 494.55718994140625, 291.9722595214844, 506.5621337890625 ], "content": "isocontours. We keep this convention to compare to the three-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 505.51617431640625, 291, 517.5211181640625 ], "spans": [ { "bbox": [ 36.85002899169922, 505.51617431640625, 291.9722900390625, 517.5211181640625 ], "content": "dimensional HRO diagram presented in Soler et al. (2013). We", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 516.4741821289062, 291, 528.4791259765625 ], "spans": [ { "bbox": [ 36.85002899169922, 516.4741821289062, 246.95132446289062, 528.4791259765625 ], "content": "can see that the HRO for all density intervals peaks at ", "score": 1, "type": "text" }, { "bbox": [ 246, 517, 289, 528 ], "content": "\\cos(\\phi)=0", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 289.19830322265625, 516.4741821289062, 291.9678955078125, 528.4791259765625 ], "content": ";", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 527.4331665039062, 291, 539.4381103515625 ], "spans": [ { "bbox": [ 36.850006103515625, 527.4331665039062, 291.9723205566406, 539.4381103515625 ], "content": "in other words, the magnetic field tends to be parallel to the den-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 538.3921508789062, 270.9013671875, 550.3970947265625 ], "spans": [ { "bbox": [ 36.850006103515625, 538.3921508789062, 270.9013671875, 550.3970947265625 ], "content": "sity structures throughout the density range we investigate.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 35, 549.7291259765625, 291, 572.693115234375 ], "lines": [ { "bbox": [ 51, 549.7291259765625, 291, 561.7340698242188 ], "spans": [ { "bbox": [ 51.79400634765625, 549.7291259765625, 291.9723205566406, 561.7340698242188 ], "content": "In order to quantify the HRO, Soler et al. (2013) introduced", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 560.6881713867188, 168.5063934326172, 572.693115234375 ], "spans": [ { "bbox": [ 36.850006103515625, 560.6881713867188, 49.0243034362793, 572.693115234375 ], "content": "the", "score": 1, "type": "text" }, { "bbox": [ 49.0243034362793, 560.6881713867188, 118.6031494140625, 572.58349609375 ], "content": " shape parameter", "score": 1, "type": "text" }, { "bbox": [ 119, 561, 127, 572 ], "content": "\\zeta", "score": 0.81, "type": "inline_equation" }, { "bbox": [ 128.3870086669922, 560.6881713867188, 168.5063934326172, 572.693115234375 ], "content": "defined as", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 34, 579, 90, 605 ], "lines": [ { "bbox": [ 34, 579, 90, 605 ], "spans": [ { "bbox": [ 34, 579, 90, 605 ], "content": "\\zeta\\equiv\\frac{A_{c}-A_{e}}{A_{c}+A_{e}},", "score": 0.91, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 35, 613.1615600585938, 291, 697.5257568359375 ], "lines": [ { "bbox": [ 35, 613.1615600585938, 291, 626.6614990234375 ], "spans": [ { "bbox": [ 36.84999084472656, 613.1615600585938, 61.188621520996094, 625.16650390625 ], "content": "where", "score": 1, "type": "text" }, { "bbox": [ 62, 614, 73, 624 ], "content": "A_{c}", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 73.23035430908203, 613.1615600585938, 291.9684753417969, 626.6614990234375 ], "content": " is the central area under the HRO diagram located be-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 624, 291, 636.1255493164062 ], "spans": [ { "bbox": [ 36.84999084472656, 624.12060546875, 60.64067840576172, 636.1255493164062 ], "content": "tween", "score": 1, "type": "text" }, { "bbox": [ 60.64067840576172, 625.5478515625, 64.25199127197266, 635.510498046875 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 63, 624, 153, 635 ], "content": "\\phi\\:\\in\\:[75.52^{\\circ},104.48^{\\circ}]", "score": 0.76, "type": "inline_equation" }, { "bbox": [ 153.2815399169922, 624.12060546875, 291.9708557128906, 636.1255493164062 ], "content": ", corresponding to mostly parallel", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 635.07958984375, 291, 648.5795288085938 ], "spans": [ { "bbox": [ 36.84999084472656, 635.07958984375, 121.2730484008789, 647.0845336914062 ], "content": "magnetic field, while", "score": 1, "type": "text" }, { "bbox": [ 122, 636, 134, 646 ], "content": "A_{e}", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 133.49037170410156, 635.07958984375, 291.9674377441406, 648.5795288085938 ], "content": " is the area under the HRO in the range", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 646, 291, 658.0435180664062 ], "spans": [ { "bbox": [ 35, 646, 168, 657 ], "content": "\\phi\\in[0^{\\circ},41.41^{\\circ}]\\cup[138.59^{\\circ},180^{\\circ}", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 288.6490478515625, 646.03857421875, 291.9665832519531, 658.0435180664062 ], "content": "-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 656.99755859375, 291, 669.0025024414062 ], "spans": [ { "bbox": [ 36.85099792480469, 656.99755859375, 254.05560302734375, 669.0025024414062 ], "content": "pendicular field. Thus for a given density interval, if 0", "score": 1, "type": "text" }, { "bbox": [ 248, 657, 289, 669 ], "content": "0<\\zeta<1", "score": 0.92, "type": "inline_equation" } ] }, { "bbox": [ 35, 667.95654296875, 291, 679.9614868164062 ], "spans": [ { "bbox": [ 36.85101318359375, 667.95654296875, 291.96331787109375, 679.9614868164062 ], "content": "the magnetic field lines are parallel to the density gradients,", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 678.9155883789062, 291, 697.5257568359375 ], "spans": [ { "bbox": [ 36.85101318359375, 678.9155883789062, 68.13357543945312, 690.9205322265625 ], "content": "while if", "score": 1, "type": "text" }, { "bbox": [ 68.13357543945312, 679.493408203125, 71.20001220703125, 697.5257568359375 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 70, 679, 120, 690 ], "content": "-1\\,<\\,\\zeta\\,<\\,0", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 120.28131103515625, 678.9155883789062, 291.966796875, 690.9205322265625 ], "content": ", the magnetic field is perpendicular to the", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 56.56658935546875, 558, 68.57152557373047 ], "spans": [ { "bbox": [ 303.3070068359375, 56.56658935546875, 406.43975830078125, 68.57152557373047 ], "content": "density gradients. Finally,", "score": 1, "type": "text" }, { "bbox": [ 406.43975830078125, 57.99385452270508, 409.0670166015625, 67.95645904541016 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 408, 57, 415, 68 ], "content": "\\zeta", "score": 0.81, "type": "inline_equation" }, { "bbox": [ 416.49700927734375, 56.56658935546875, 558.4242553710938, 68.57152557373047 ], "content": "close to zero happens when there is", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 67.52557373046875, 443.1619567871094, 79.53050994873047 ], "spans": [ { "bbox": [ 303.3070068359375, 67.52557373046875, 443.1619567871094, 79.53050994873047 ], "content": "no clear tendency in the alignment.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 56.56658935546875, 558, 79.53050994873047 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 302, 80.96856689453125, 558, 136.80943298339844 ], "lines": [ { "bbox": [ 318, 80.96856689453125, 558, 92.97350311279297 ], "spans": [ { "bbox": [ 318.2510070800781, 80.96856689453125, 477.65240478515625, 92.97350311279297 ], "content": "In the bottom panel of Figure 3, we plot", "score": 1, "type": "text" }, { "bbox": [ 477.65240478515625, 82.39583587646484, 480.17999267578125, 92.35843658447266 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 479, 82, 486, 92 ], "content": "\\zeta", "score": 0.79, "type": "inline_equation" }, { "bbox": [ 487.5090026855469, 80.96856689453125, 558.4227294921875, 92.97350311279297 ], "content": "for the simulation", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 91.92755126953125, 558, 103.93248748779297 ], "spans": [ { "bbox": [ 303.3070068359375, 91.92755126953125, 558.42919921875, 103.93248748779297 ], "content": "in the density ranges defined above, showing that the magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 102.88653564453125, 558, 114.89147186279297 ], "spans": [ { "bbox": [ 303.3070068359375, 102.88653564453125, 558.4290771484375, 114.89147186279297 ], "content": "field becomes increasingly parallel to the density gradient as the", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 113, 558, 125.85045623779297 ], "spans": [ { "bbox": [ 303.3070068359375, 113.84552001953125, 395.9392395019531, 125.85045623779297 ], "content": "density increases up to ", "score": 1, "type": "text" }, { "bbox": [ 395, 113, 447, 124 ], "content": "\\bar{3}\\,\\dot{\\times}\\,\\dot{1}0^{2}\\,\\mathrm{cm}^{-3}", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 447.2489929199219, 113.84552001953125, 558.4218139648438, 125.85045623779297 ], "content": ", and then the degree of par-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 124.80450439453125, 483.72967529296875, 136.80943298339844 ], "spans": [ { "bbox": [ 303.3070068359375, 124.80450439453125, 483.72967529296875, 136.80943298339844 ], "content": "allel alignment decreases for the last interval.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 138.24749755859375, 558, 336.55322265625 ], "lines": [ { "bbox": [ 318, 138.24749755859375, 558, 150.25242614746094 ], "spans": [ { "bbox": [ 318.2510070800781, 138.24749755859375, 558.4293823242188, 150.25242614746094 ], "content": "The trend of the shape parameter shown in Figure 6 of", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 149.20648193359375, 558, 161.21141052246094 ], "spans": [ { "bbox": [ 303.3070068359375, 149.20648193359375, 558.42919921875, 161.21141052246094 ], "content": "Soler et al. (2013) indicates that the alignment of the magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 160.16448974609375, 558, 172.16941833496094 ], "spans": [ { "bbox": [ 303.3070068359375, 160.16448974609375, 558.4292602539062, 172.16941833496094 ], "content": "field and isodensity contours becomes less parallel as the den-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 171.12347412109375, 558, 183.12840270996094 ], "spans": [ { "bbox": [ 303.3070068359375, 171.12347412109375, 558.42919921875, 183.12840270996094 ], "content": "sity increases. In that work, the authors sample density values", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 178.4664306640625, 558, 194.08738708496094 ], "spans": [ { "bbox": [ 301, 181, 440, 193 ], "content": "n\\ \\stackrel{\\cdot}{\\in}\\ [1.6\\times10^{2},3.16\\times10^{6}]\\ \\ \\mathrm{cm}^{3}", "score": 0.68, "type": "inline_equation" }, { "bbox": [ 438.8199157714844, 178.4664306640625, 443.08001708984375, 194.08738708496094 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 443.08001708984375, 182.08245849609375, 558.427001953125, 194.08738708496094 ], "content": "in isothermal simulations of", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 193.04144287109375, 558, 205.04637145996094 ], "spans": [ { "bbox": [ 303.3070068359375, 193.04144287109375, 558.4293212890625, 205.04637145996094 ], "content": "cold molecular gas. In contrast, since we are interested in under-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 204.00042724609375, 558, 216.00535583496094 ], "spans": [ { "bbox": [ 303.3070068359375, 204.00042724609375, 558.42919921875, 216.00535583496094 ], "content": "standing how this correlation arises as the cloud is assembled,", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 214.95941162109375, 558, 226.96434020996094 ], "spans": [ { "bbox": [ 303.3070068359375, 214.95941162109375, 558.4292602539062, 226.96434020996094 ], "content": "our simulation starts with warm atomic gas leading to density", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 225, 558, 237.92332458496094 ], "spans": [ { "bbox": [ 303.3070068359375, 225.91839599609375, 362.1659851074219, 237.92332458496094 ], "content": "structures with", "score": 1, "type": "text" }, { "bbox": [ 363, 225, 483, 237 ], "content": "n\\in[6\\times10^{-1},2.2\\times10^{3}]~\\bar{\\mathrm{cm}}^{3}.", "score": 0.73, "type": "inline_equation" }, { "bbox": [ 483.9856262207031, 225.91839599609375, 558.4263305664062, 237.92332458496094 ], "content": " Therefore, the ob-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 236.87738037109375, 558, 248.88230895996094 ], "spans": [ { "bbox": [ 303.30694580078125, 236.87738037109375, 558.42919921875, 248.88230895996094 ], "content": "tained HRO shape parameter in Figure 3 complements the one", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 247.83636474609375, 558, 259.84130859375 ], "spans": [ { "bbox": [ 303.30694580078125, 247.83636474609375, 558.4290161132812, 259.84130859375 ], "content": "obtained by Soler et al. (2013), as it corresponds to gas that can", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 258.79534912109375, 558, 270.80029296875 ], "spans": [ { "bbox": [ 303.30694580078125, 258.79534912109375, 558.4290771484375, 270.80029296875 ], "content": "be considered the precursor of a molecular cloud. Specifically,", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 269.75335693359375, 558, 281.75830078125 ], "spans": [ { "bbox": [ 303.30694580078125, 269.75335693359375, 558.4291381835938, 281.75830078125 ], "content": "the HRO and shape parameter obtained in Figure 3 shows an", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 280.71234130859375, 558, 292.71728515625 ], "spans": [ { "bbox": [ 303.30694580078125, 280.71234130859375, 558.4292602539062, 292.71728515625 ], "content": "increase in the degree of parallel alignment for the first four den-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 291.67132568359375, 558, 303.67626953125 ], "spans": [ { "bbox": [ 303.30694580078125, 291.67132568359375, 558.4291381835938, 303.67626953125 ], "content": "sity intervals, while for the last one, we can appreciate a change", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 302.63031005859375, 558, 314.63525390625 ], "spans": [ { "bbox": [ 303.30694580078125, 302.63031005859375, 558.4290771484375, 314.63525390625 ], "content": "of this tendency towards a non-preferential orientation, which", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 313.58929443359375, 558, 325.59423828125 ], "spans": [ { "bbox": [ 303.30694580078125, 313.58929443359375, 558.4291381835938, 325.59423828125 ], "content": "corresponds to the lowest density interval in the results of Soler", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 324.54827880859375, 354.2158203125, 336.55322265625 ], "spans": [ { "bbox": [ 303.30694580078125, 324.54827880859375, 354.2158203125, 336.55322265625 ], "content": "et al. (2013).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 337.99127197265625, 558, 426.7081298828125 ], "lines": [ { "bbox": [ 318, 337.99127197265625, 558, 349.9962158203125 ], "spans": [ { "bbox": [ 318.2509460449219, 337.99127197265625, 558.4293212890625, 349.9962158203125 ], "content": "In Figure 4, we show the density structures between the four", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 348.95025634765625, 558, 360.9552001953125 ], "spans": [ { "bbox": [ 303.30694580078125, 348.95025634765625, 558.4291381835938, 360.9552001953125 ], "content": "highest density intervals used to obtain the HRO and shape pa-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 359.90924072265625, 558, 371.9141845703125 ], "spans": [ { "bbox": [ 303.30694580078125, 359.90924072265625, 558.4292602539062, 371.9141845703125 ], "content": "rameter of Figure 3. It can be seen from this figure that the mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 370.86822509765625, 558, 382.8731689453125 ], "spans": [ { "bbox": [ 303.30694580078125, 370.86822509765625, 558.4290771484375, 382.8731689453125 ], "content": "netic field (black arrows) tends to be parallel to the density struc-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 381.82623291015625, 558, 393.8311767578125 ], "spans": [ { "bbox": [ 303.30694580078125, 381.82623291015625, 558.4292602539062, 393.8311767578125 ], "content": "tures for the four density intervals. However, for the highest den-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 392.78521728515625, 558, 404.7901611328125 ], "spans": [ { "bbox": [ 303.30694580078125, 392.78521728515625, 558.42919921875, 404.7901611328125 ], "content": "sity interval, the magnetic field does not follow this general trend", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 403.74420166015625, 558, 415.7491455078125 ], "spans": [ { "bbox": [ 303.30694580078125, 403.74420166015625, 558.4291381835938, 415.7491455078125 ], "content": "in some regions, leading to the observed change in the shape pa-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 414.70318603515625, 335.6754455566406, 426.7081298828125 ], "spans": [ { "bbox": [ 303.30694580078125, 414.70318603515625, 335.6754455566406, 426.7081298828125 ], "content": "rameter.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 456, 453, 468 ], "lines": [ { "bbox": [ 303.30694580078125, 456.5015869140625, 453.48583984375, 469.51824951171875 ], "spans": [ { "bbox": [ 303.30694580078125, 456.5015869140625, 453.48583984375, 469.51824951171875 ], "content": "4. Magnetic field line evolution", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 302, 476.9701843261719, 558, 576.6460571289062 ], "lines": [ { "bbox": [ 302, 476.9701843261719, 558, 488.9751281738281 ], "spans": [ { "bbox": [ 303.30694580078125, 476.9701843261719, 558.4291381835938, 488.9751281738281 ], "content": "To understand the alignment of the magnetic field with CACs", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 487.92919921875, 558, 499.93414306640625 ], "spans": [ { "bbox": [ 303.30694580078125, 487.92919921875, 558.42919921875, 499.93414306640625 ], "content": "shown in the previous section, we followed the evolution of the", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 498.88720703125, 558, 510.89215087890625 ], "spans": [ { "bbox": [ 303.30694580078125, 498.88720703125, 558.42919921875, 510.89215087890625 ], "content": "magnetic field lines. The resulting configuration of the three-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 509.84619140625, 558, 521.8511352539062 ], "spans": [ { "bbox": [ 303.30694580078125, 509.84619140625, 558.42919921875, 521.8511352539062 ], "content": "dimensional density structures and magnetic field lines of Re-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 520.80517578125, 558, 532.8101196289062 ], "spans": [ { "bbox": [ 303.30694580078125, 520.80517578125, 558.42919921875, 532.8101196289062 ], "content": "gion R1 after 5 Myr of evolution is shown in Figure 2, where", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 531.76416015625, 558, 543.7691040039062 ], "spans": [ { "bbox": [ 303.30694580078125, 531.76416015625, 558.4293823242188, 543.7691040039062 ], "content": "we can see the shock fronts at each side of the central condensa-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 542.72314453125, 558, 554.7280883789062 ], "spans": [ { "bbox": [ 303.30694580078125, 542.72314453125, 558.4290161132812, 554.7280883789062 ], "content": "tion region. The magnetic field lines start bending at these shock", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 553.68212890625, 558, 565.6870727539062 ], "spans": [ { "bbox": [ 303.30694580078125, 553.68212890625, 558.42919921875, 565.6870727539062 ], "content": "fronts along their way from the center of the computational do-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 564.64111328125, 326, 576.6460571289062 ], "spans": [ { "bbox": [ 303.30694580078125, 564.64111328125, 325.7228088378906, 576.6460571289062 ], "content": "main.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 578.0841064453125, 558, 633.924072265625 ], "lines": [ { "bbox": [ 318, 578.0841064453125, 558, 590.0890502929688 ], "spans": [ { "bbox": [ 318.2509460449219, 578.0841064453125, 558.4293823242188, 590.0890502929688 ], "content": "As can be seen in the provided animation (Fig. 2), the mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 589.0430908203125, 558, 601.0480346679688 ], "spans": [ { "bbox": [ 303.30694580078125, 589.0430908203125, 558.4290771484375, 601.0480346679688 ], "content": "netic field lines change their direction from being nearly parallel", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 600.0020751953125, 558, 612.0070190429688 ], "spans": [ { "bbox": [ 303.30694580078125, 600.0020751953125, 325.4039611816406, 612.0070190429688 ], "content": "to the", "score": 1, "type": "text" }, { "bbox": [ 326, 602, 333, 610 ], "content": "x\\cdot", "score": 0.72, "type": "inline_equation" }, { "bbox": [ 332.52294921875, 600.0020751953125, 558.4248657226562, 612.0070190429688 ], "content": "-axis at early times to being mostly perpendicular to it af-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 610.9600830078125, 558, 622.9650268554688 ], "spans": [ { "bbox": [ 303.30694580078125, 610.9600830078125, 558.4290161132812, 622.9650268554688 ], "content": "ter 5 Myr in the neighborhood of the dense layer. In this section,", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 621.9191284179688, 427.25164794921875, 633.924072265625 ], "spans": [ { "bbox": [ 303.30694580078125, 621.9191284179688, 427.25164794921875, 633.924072265625 ], "content": "we investigate how this occurs.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 653, 505, 664 ], "lines": [ { "bbox": [ 303.30694580078125, 652.6038818359375, 504.53167724609375, 664.3209228515625 ], "spans": [ { "bbox": [ 303.30694580078125, 652.6038818359375, 504.53167724609375, 664.3209228515625 ], "content": "4.1. Magnetic field amplification by MHD shocks", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 302, 672.2571411132812, 558, 760.9750366210938 ], "lines": [ { "bbox": [ 302, 672.2571411132812, 558, 684.2620849609375 ], "spans": [ { "bbox": [ 303.30694580078125, 672.2571411132812, 558.42919921875, 684.2620849609375 ], "content": "As seen in Figure 2, and considering the shock front located at", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 683.2161254882812, 558, 695.2210693359375 ], "spans": [ { "bbox": [ 303.30694580078125, 683.2161254882812, 558.42919921875, 695.2210693359375 ], "content": "the right of the condensation layer, we see that the angle between", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 694.1751098632812, 558, 706.1800537109375 ], "spans": [ { "bbox": [ 303.30694580078125, 694.1751098632812, 558.4292602539062, 706.1800537109375 ], "content": "the upstream magnetic field and the normal to the shock front", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 705, 558, 717.1390991210938 ], "spans": [ { "bbox": [ 303.30694580078125, 705.1341552734375, 334.8585205078125, 717.1390991210938 ], "content": "satisfies", "score": 1, "type": "text" }, { "bbox": [ 336, 705, 361, 715 ], "content": "\\theta\\approx0", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 360.19122314453125, 705.1341552734375, 558.427001953125, 717.1390991210938 ], "content": " for all the magnetic lines shown. The small vari-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 716.0931396484375, 558, 728.0980834960938 ], "spans": [ { "bbox": [ 303.30694580078125, 716.0931396484375, 337.97674560546875, 728.0980834960938 ], "content": "ations of", "score": 1, "type": "text" }, { "bbox": [ 337.97674560546875, 717.5203857421875, 344.9245300292969, 727.4830322265625 ], "content": " θ", "score": 1, "type": "text" }, { "bbox": [ 344.9245300292969, 716.0931396484375, 558.4246215820312, 728.0980834960938 ], "content": " around zero are due to the fact that the shock front is", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 727.0521240234375, 558, 739.0570678710938 ], "spans": [ { "bbox": [ 303.3069152832031, 727.0521240234375, 558.4290771484375, 739.0570678710938 ], "content": "not a plane when it moves away from the central region because", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 738.0111083984375, 558, 750.0160522460938 ], "spans": [ { "bbox": [ 303.3069152832031, 738.0111083984375, 558.428955078125, 750.0160522460938 ], "content": "of the fluctuations added to the inflow velocity in the simulation", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 748.9700927734375, 326, 760.9750366210938 ], "spans": [ { "bbox": [ 303.3069152832031, 748.9700927734375, 326.82861328125, 760.9750366210938 ], "content": "setup.", "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 241, 34, 355, 42 ], "lines": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "spans": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 247.45773315429688, 43.38558578491211 ], "content": "A", "score": 1, "type": "text" }, { "bbox": [ 247.45700073242188, 34.06907653808594, 254.432861328125, 43.03547668457031 ], "content": "&", "score": 1, "type": "text" }, { "bbox": [ 254.43299865722656, 32.58107376098633, 288.55010986328125, 43.38558578491211 ], "content": "A proofs:", "score": 1, "type": "text" }, { "bbox": [ 288.55010986328125, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "content": " manuscript no. aa", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 36, 771, 139, 779 ], "lines": [ { "bbox": [ 36.849700927734375, 769.81591796875, 140.07986450195312, 780.6204223632812 ], "spans": [ { "bbox": [ 36.849700927734375, 769.81591796875, 140.07986450195312, 780.6204223632812 ], "content": "Article number, page 4 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 3, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 33, 84, 560, 344 ], "blocks": [ { "bbox": [ 33, 84, 553, 303 ], "lines": [ { "bbox": [ 33, 84, 553, 303 ], "spans": [ { "bbox": [ 33, 84, 553, 303 ], "image_path": "f58693ef236783809189fc9ccee7f9b0cfc65496fed0f0ca6bee2a745507dd5b.jpg", "score": 0.9997164011001587, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 36, 322, 560, 344 ], "lines": [ { "bbox": [ 36.849998474121094, 322.947265625, 558.4275512695312, 334.6125793457031 ], "spans": [ { "bbox": [ 36.849998474121094, 322.947265625, 61.39103698730469, 334.6125793457031 ], "content": "Fig. 1.", "score": 1, "type": "text" }, { "bbox": [ 61.39103698730469, 323.27008056640625, 558.4275512695312, 334.0745849609375 ], "content": " Column density of the cold atomic cloud’s simulation at 5 Myr. The highlighted region (R1) is examined in 3D in order to show the", "score": 1, "type": "text" } ] }, { "bbox": [ 36.84999465942383, 333.23309326171875, 178.97640991210938, 344.03759765625 ], "spans": [ { "bbox": [ 36.84999465942383, 333.23309326171875, 178.97640991210938, 344.03759765625 ], "content": "magnetic field and density morphology.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 35, 362.14959716796875, 291, 386.6075439453125 ], "lines": [ { "bbox": [ 51, 362.14959716796875, 291, 374.154541015625 ], "spans": [ { "bbox": [ 51.79399490356445, 362.14959716796875, 291.97235107421875, 374.154541015625 ], "content": "Following Delmont & Keppens (2011), the fast magne-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 373.10760498046875, 157.29669189453125, 386.6075439453125 ], "spans": [ { "bbox": [ 36.84999465942383, 373.10760498046875, 90.80743408203125, 385.112548828125 ], "content": "tosonic speed", "score": 1, "type": "text" }, { "bbox": [ 92, 375, 103, 385 ], "content": "\\boldsymbol{u}_{f}", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 101.26470947265625, 373.10760498046875, 157.29669189453125, 386.6075439453125 ], "content": " is defined as:", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 34, 396, 210, 420 ], "lines": [ { "bbox": [ 34, 396, 210, 420 ], "spans": [ { "bbox": [ 34, 396, 210, 420 ], "content": "u_{f}^{2}=\\frac{1}{2}\\left(c_{s}^{2}+u_{\\mathrm{A}}^{2}+\\,\\sqrt{(c_{s}^{2}+u_{\\mathrm{A}}^{2})^{2}-4u_{\\mathrm{A,n}}^{2}c_{s}^{2}}\\right),", "score": 0.92, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 35, 431.6135559082031, 291, 531.2894287109375 ], "lines": [ { "bbox": [ 35, 431.6135559082031, 291, 445.11248779296875 ], "spans": [ { "bbox": [ 36.85002136230469, 431.6135559082031, 61.18865203857422, 443.6184997558594 ], "content": "where", "score": 1, "type": "text" }, { "bbox": [ 61.18865203857422, 431.6135559082031, 65.31902313232422, 443.5089111328125 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 64, 433, 75, 443 ], "content": "u_{A}", "score": 0.86, "type": "inline_equation" }, { "bbox": [ 74.73601531982422, 431.6135559082031, 179.4383087158203, 445.11248779296875 ], "content": " is the Alfvén speed and", "score": 1, "type": "text" }, { "bbox": [ 179.4383087158203, 431.6135559082031, 183.57101440429688, 443.5089111328125 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 182, 433, 199, 443 ], "content": "u_{A,n}", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 198.21791076660156, 431.6135559082031, 291.9714050292969, 445.11248779296875 ], "content": " is its component nor-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 442.57257080078125, 291, 456.0715026855469 ], "spans": [ { "bbox": [ 36.85002136230469, 442.57257080078125, 170.99639892578125, 454.5775146484375 ], "content": "mal to the shock front. Defining", "score": 1, "type": "text" }, { "bbox": [ 170.99639892578125, 442.57257080078125, 174.85702514648438, 454.4679260253906 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 173, 444, 184, 453 ], "content": "u_{n}", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 183.32492065429688, 442.57257080078125, 291.9715270996094, 456.0715026855469 ], "content": " as the flow speed normal", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 453.53155517578125, 291, 467.0304870605469 ], "spans": [ { "bbox": [ 36.85003662109375, 453.53155517578125, 59.475101470947266, 465.5364990234375 ], "content": "to the", "score": 1, "type": "text" }, { "bbox": [ 98.36908721923828, 453.53155517578125, 116.01285552978516, 465.5364990234375 ], "content": "e flo", "score": 1, "type": "text" }, { "bbox": [ 150.49343872070312, 453.53155517578125, 187.9827117919922, 465.5364990234375 ], "content": "rred to as", "score": 1, "type": "text" }, { "bbox": [ 187.9827117919922, 453.53155517578125, 227.222900390625, 465.4269104003906 ], "content": " superfast", "score": 1, "type": "text" }, { "bbox": [ 227.222900390625, 453.53155517578125, 251.68402099609375, 465.5364990234375 ], "content": " when", "score": 1, "type": "text" }, { "bbox": [ 253, 454, 290, 466 ], "content": "|u_{n}|>u_{f}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 289.4779968261719, 453.53155517578125, 291.9686584472656, 467.0304870605469 ], "content": ".", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 464.49053955078125, 291, 484.59466552734375 ], "spans": [ { "bbox": [ 36.84999084472656, 464.49053955078125, 58.98688888549805, 476.4954833984375 ], "content": "Since", "score": 1, "type": "text" }, { "bbox": [ 60, 466, 100, 476 ], "content": "u_{A,n}\\,\\approx\\,u_{A}", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 76.50289916992188, 465.068359375, 86.80421447753906, 484.59466552734375 ], "content": " ≈", "score": 1, "type": "text" }, { "bbox": [ 99.68799591064453, 464.49053955078125, 117.43999481201172, 477.9894714355469 ], "content": " and", "score": 1, "type": "text" }, { "bbox": [ 117.43999481201172, 464.49053955078125, 125.29029846191406, 476.3858947753906 ], "content": " u", "score": 1, "type": "text" }, { "bbox": [ 119, 466, 151, 475 ], "content": "u_{n}\\approx u_{0}", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 128.7769012451172, 465.068359375, 139.07821655273438, 484.59466552734375 ], "content": " ≈", "score": 1, "type": "text" }, { "bbox": [ 151.0128936767578, 464.49053955078125, 291.9634704589844, 477.9894714355469 ], "content": " for the preshock flow in the three-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 475.44854736328125, 291, 487.4534912109375 ], "spans": [ { "bbox": [ 36.850006103515625, 475.44854736328125, 291.9722595214844, 487.4534912109375 ], "content": "dimensional simulation described in Section 2, it can be seen", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 486.40753173828125, 291, 498.4124755859375 ], "spans": [ { "bbox": [ 36.850006103515625, 486.40753173828125, 291.97222900390625, 498.4124755859375 ], "content": "from equation (3) that this flow is superfast. The downstream", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 497.36651611328125, 291, 509.3714599609375 ], "spans": [ { "bbox": [ 36.850006103515625, 497.36651611328125, 291.9722900390625, 509.3714599609375 ], "content": "flow, just after the shock front, becomes transalfvénic as we can", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 508.32550048828125, 291, 520.3304443359375 ], "spans": [ { "bbox": [ 36.850006103515625, 508.32550048828125, 198.93157958984375, 520.3304443359375 ], "content": "see from Figure 2. Therefore the relation", "score": 1, "type": "text" }, { "bbox": [ 200, 509, 263, 520 ], "content": "u_{f}>|u_{n}|>u_{A,n}", "score": 0.94, "type": "inline_equation" }, { "bbox": [ 262.69195556640625, 508.32550048828125, 291.9720153808594, 520.3304443359375 ], "content": ", which", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 519.2844848632812, 245.88519287109375, 531.2894287109375 ], "spans": [ { "bbox": [ 36.84996032714844, 519.2844848632812, 245.88519287109375, 531.2894287109375 ], "content": "characterizes a subfast flow, is satisfied downstream.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 35, 531.407470703125, 291, 587.2483520507812 ], "lines": [ { "bbox": [ 51, 531.407470703125, 291, 543.4124145507812 ], "spans": [ { "bbox": [ 51.79396057128906, 531.407470703125, 291.9722900390625, 543.4124145507812 ], "content": "Such MHD shock, going from a superfast to a subfast flow,", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 542.366455078125, 291, 554.3713989257812 ], "spans": [ { "bbox": [ 36.84996032714844, 542.366455078125, 291.9721984863281, 554.3713989257812 ], "content": "is called a fast MHD shock (Delmont & Keppens 2011), whose", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 553.325439453125, 291, 565.3303833007812 ], "spans": [ { "bbox": [ 36.84996032714844, 553.325439453125, 291.97222900390625, 565.3303833007812 ], "content": "main feature is that it refracts the magnetic field away from the", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 564.284423828125, 291, 576.2893676757812 ], "spans": [ { "bbox": [ 36.84996032714844, 564.284423828125, 291.9721984863281, 576.2893676757812 ], "content": "shock normal due to the amplification of the magnetic field com-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 575.243408203125, 291, 587.2483520507812 ], "spans": [ { "bbox": [ 36.84996032714844, 575.243408203125, 291.9721984863281, 587.2483520507812 ], "content": "ponent parallel to the shock front. This amplification is given by", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 34, 606, 152, 640 ], "lines": [ { "bbox": [ 34, 606, 152, 640 ], "spans": [ { "bbox": [ 34, 606, 152, 640 ], "content": "B_{\\parallel,2}=\\frac{r_{\\rho}B_{\\parallel,1}(M_{A,1}^{2}-\\cos^{2}\\theta)}{M_{A,1}^{2}-r_{\\rho}\\cos^{2}\\theta},", "score": 0.93, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 35, 650.340576171875, 291, 760.9755249023438 ], "lines": [ { "bbox": [ 35, 650.340576171875, 291, 663.8395385742188 ], "spans": [ { "bbox": [ 36.84999084472656, 650.340576171875, 61.188621520996094, 662.3455200195312 ], "content": "where", "score": 1, "type": "text" }, { "bbox": [ 62, 651, 101, 662 ], "content": "B_{\\parallel,1}=B_{1}", "score": 0.7, "type": "inline_equation" }, { "bbox": [ 100.79489135742188, 650.340576171875, 114.5803451538086, 663.8395385742188 ], "content": " sin", "score": 1, "type": "text" }, { "bbox": [ 115, 651, 121, 660 ], "content": "\\theta", "score": 0.26, "type": "inline_equation" }, { "bbox": [ 120.61357879638672, 650.340576171875, 137.7509765625, 662.3455200195312 ], "content": " and", "score": 1, "type": "text" }, { "bbox": [ 139, 651, 155, 662 ], "content": "B_{\\parallel,2}", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 154.71788024902344, 650.340576171875, 291.96343994140625, 663.8395385742188 ], "content": " are the upstream and downstream", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 661.299560546875, 291, 673.3045043945312 ], "spans": [ { "bbox": [ 36.84998321533203, 661.299560546875, 247.74826049804688, 673.3045043945312 ], "content": "magnetic field components parallel to the shock front,", "score": 1, "type": "text" }, { "bbox": [ 248, 662, 291, 673 ], "content": "r_{\\rho}=\\rho_{2}/\\rho_{1}", "score": 0.91, "type": "inline_equation" } ] }, { "bbox": [ 35, 672.258544921875, 291, 684.2634887695312 ], "spans": [ { "bbox": [ 36.850006103515625, 672.258544921875, 157.5967254638672, 684.2634887695312 ], "content": "is the ratio of the downstream", "score": 1, "type": "text" }, { "bbox": [ 159, 673, 176, 684 ], "content": "(\\rho_{2})", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 176.2245635986328, 672.258544921875, 235.98023986816406, 684.2634887695312 ], "content": " and upstream ", "score": 1, "type": "text" }, { "bbox": [ 235, 673, 251, 684 ], "content": "(\\rho_{1})", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 251.6605682373047, 672.258544921875, 291.96923828125, 684.2634887695312 ], "content": " densities,", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 683, 291, 696.7164916992188 ], "spans": [ { "bbox": [ 35, 683, 55, 695 ], "content": "M_{A,1}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 55.312923431396484, 683.216552734375, 275.6275329589844, 696.7164916992188 ], "content": " is the Alfvénic Mach number of the upstream gas, and", "score": 1, "type": "text" }, { "bbox": [ 275.6275329589844, 684.643798828125, 278.2190246582031, 694.6064453125 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 277, 684, 283, 693 ], "content": "\\theta", "score": 0.73, "type": "inline_equation" }, { "bbox": [ 282.5926208496094, 683.216552734375, 291.96807861328125, 695.2214965820312 ], "content": " is", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 694.1755981445312, 291, 706.1805419921875 ], "spans": [ { "bbox": [ 36.85002136230469, 694.1755981445312, 291.9722595214844, 706.1805419921875 ], "content": "the angle between the vector normal to the front-shock and the", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 705, 291, 717.1395263671875 ], "spans": [ { "bbox": [ 36.85002136230469, 705.1345825195312, 131.99282836914062, 717.1395263671875 ], "content": "upstream magnetic field", "score": 1, "type": "text" }, { "bbox": [ 133, 705, 147, 716 ], "content": "B_{1}", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 146.79803466796875, 705.1345825195312, 291.9730224609375, 717.1395263671875 ], "content": ". Since this amplification depends on", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 716.0935668945312, 291, 728.0985107421875 ], "spans": [ { "bbox": [ 36.85003662109375, 716.0935668945312, 73.0840072631836, 728.0985107421875 ], "content": "the angle", "score": 1, "type": "text" }, { "bbox": [ 74, 717, 80, 726 ], "content": "\\theta", "score": 0.69, "type": "inline_equation" }, { "bbox": [ 80.0860366821289, 716.0935668945312, 275.1337585449219, 728.0985107421875 ], "content": ", the fluctuating curvature of the shock front at di", "score": 1, "type": "text" }, { "bbox": [ 275.1320495605469, 717.7468872070312, 281.109619140625, 727.70947265625 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 281.1090393066406, 716.0935668945312, 291.96826171875, 728.0985107421875 ], "content": "er-", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 727.0526123046875, 291, 739.0575561523438 ], "spans": [ { "bbox": [ 36.85003662109375, 727.0526123046875, 291.97222900390625, 739.0575561523438 ], "content": "ent positions yields the inhomogeneous downstream magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 738.0115966796875, 291, 750.0165405273438 ], "spans": [ { "bbox": [ 36.85003662109375, 738.0115966796875, 291.9723205566406, 750.0165405273438 ], "content": "field pattern when the shock front travels away from the central", "score": 1, "type": "text" } ] }, { "bbox": [ 35, 748.9705810546875, 236.03228759765625, 760.9755249023438 ], "spans": [ { "bbox": [ 36.85003662109375, 748.9705810546875, 236.03228759765625, 760.9755249023438 ], "content": "region, early in the evolution times (see Figure 2).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 362.3353271484375, 413.41705322265625, 374.0523986816406 ], "lines": [ { "bbox": [ 302, 362.3353271484375, 413.41705322265625, 374.0523986816406 ], "spans": [ { "bbox": [ 303.3070373535156, 362.3353271484375, 413.41705322265625, 374.0523986816406 ], "content": "4.2. Line bending analysis", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 379.50457763671875, 558, 413.426513671875 ], "lines": [ { "bbox": [ 302, 379.50457763671875, 558, 391.509521484375 ], "spans": [ { "bbox": [ 303.3070373535156, 379.50457763671875, 558.4293212890625, 391.509521484375 ], "content": "To understand how magnetic field lines change their original di-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 390.46258544921875, 558, 402.467529296875 ], "spans": [ { "bbox": [ 303.3070373535156, 390.46258544921875, 558.4292602539062, 402.467529296875 ], "content": "rection in the post-shock region, we consider the induction equa-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 401.42156982421875, 379.1323547363281, 413.426513671875 ], "spans": [ { "bbox": [ 303.3070373535156, 401.42156982421875, 379.1323547363281, 413.426513671875 ], "content": "tion in ideal MHD,", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 418, 465, 443 ], "lines": [ { "bbox": [ 302, 418, 465, 443 ], "spans": [ { "bbox": [ 302, 418, 465, 443 ], "content": "\\frac{\\partial\\pmb{B}}{\\partial t}=-\\pmb{B}\\nabla\\cdot\\pmb{u}-(\\pmb{u}\\cdot\\nabla)\\pmb{B}+(\\pmb{B}\\cdot\\nabla)\\pmb{u}.", "score": 0.93, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 303, 458, 480, 469 ], "lines": [ { "bbox": [ 303.306884765625, 457.82830810546875, 479.6495056152344, 469.5453796386719 ], "spans": [ { "bbox": [ 303.306884765625, 457.82830810546875, 479.6495056152344, 469.5453796386719 ], "content": "4.2.1. Line bending by a compressive flow", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 302, 474.99755859375, 558, 563.7153930664062 ], "lines": [ { "bbox": [ 302, 474.99755859375, 558, 487.00250244140625 ], "spans": [ { "bbox": [ 303.306884765625, 474.99755859375, 558.4292602539062, 487.00250244140625 ], "content": "This analysis takes place after the magnetic field component par-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 485.95654296875, 558, 497.96148681640625 ], "spans": [ { "bbox": [ 303.306884765625, 485.95654296875, 558.4290161132812, 497.96148681640625 ], "content": "allel to the shock front is amplified by the fast MHD shock, i.e.,", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 496.91552734375, 558, 508.92047119140625 ], "spans": [ { "bbox": [ 303.306884765625, 496.91552734375, 558.4290161132812, 508.92047119140625 ], "content": "in a region containing cooling and thermally unstable gas. Af-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 507.87451171875, 558, 519.8794555664062 ], "spans": [ { "bbox": [ 303.306884765625, 507.87451171875, 558.4292602539062, 519.8794555664062 ], "content": "ter the amplification, magnetic field lines adopt the shape repre-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 518.83349609375, 558, 530.8384399414062 ], "spans": [ { "bbox": [ 303.306884765625, 518.83349609375, 558.42919921875, 530.8384399414062 ], "content": "sented in Figure 5, where the magnetic field component parallel", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 529.79248046875, 558, 541.7974243164062 ], "spans": [ { "bbox": [ 303.306884765625, 529.79248046875, 375.05743408203125, 541.7974243164062 ], "content": "to the shock front,", "score": 1, "type": "text" }, { "bbox": [ 376, 530, 387, 541 ], "content": "B_{y}", "score": 0.86, "type": "inline_equation" }, { "bbox": [ 387.2288818359375, 529.79248046875, 558.4262084960938, 541.7974243164062 ], "content": ", has been amplified, and the magnetic field", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 540.75146484375, 558, 554.2504272460938 ], "spans": [ { "bbox": [ 303.306884765625, 540.75146484375, 475.9286804199219, 552.7564086914062 ], "content": "component perpendicular to the shock front", "score": 1, "type": "text" }, { "bbox": [ 477, 541, 489, 552 ], "content": "B_{x}", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 487.91326904296875, 540.75146484375, 558.4244384765625, 554.2504272460938 ], "content": " stays constant, in", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 551.71044921875, 533.2536010742188, 563.7153930664062 ], "spans": [ { "bbox": [ 303.306884765625, 551.71044921875, 533.2536010742188, 563.7153930664062 ], "content": "agreement with the jump condition for the magnetic field.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 302, 562.66845703125, 558, 761 ], "lines": [ { "bbox": [ 318.2508850097656, 562.66845703125, 558, 574.6734008789062 ], "spans": [ { "bbox": [ 318.2508850097656, 562.66845703125, 558.42919921875, 574.6734008789062 ], "content": "Furthermore, we assume that the flow speed decreases along", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 573.62744140625, 558, 585.6323852539062 ], "spans": [ { "bbox": [ 302, 576, 309, 583 ], "content": "x", "score": 0.72, "type": "inline_equation" }, { "bbox": [ 308.228271484375, 573.62744140625, 433.30572509765625, 585.6323852539062 ], "content": " in the post-shock region; i.e.,", "score": 1, "type": "text" }, { "bbox": [ 433.30572509765625, 573.62744140625, 437.1528625488281, 585.5227661132812 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 436, 574, 484, 585 ], "content": "u_{x}~=~u_{x}(x)", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 483.5093688964844, 573.62744140625, 501.74090576171875, 585.6323852539062 ], "content": " and", "score": 1, "type": "text" }, { "bbox": [ 501.74090576171875, 575.0546875, 505.58184814453125, 585.017333984375 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 504, 574, 556, 585 ], "content": "\\partial u_{x}/\\partial x\\ <\\ 0", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 555.9341430664062, 573.62744140625, 558.4248046875, 585.6323852539062 ], "content": ",", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 584.58642578125, 558, 596.5913696289062 ], "spans": [ { "bbox": [ 303.30682373046875, 584.58642578125, 558.4291381835938, 596.5913696289062 ], "content": "which represents the compression caused by the cooling of the", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 595.54541015625, 558, 607.5503540039062 ], "spans": [ { "bbox": [ 303.30682373046875, 595.54541015625, 558.4291381835938, 607.5503540039062 ], "content": "gas as it travels downstream. Finally, we disregard the down-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 606.5044555664062, 558, 618.5093994140625 ], "spans": [ { "bbox": [ 303.30682373046875, 606.5044555664062, 547.0120239257812, 618.5093994140625 ], "content": "stream component of the velocity parallel to the shock front,", "score": 1, "type": "text" }, { "bbox": [ 547.0120239257812, 606.5044555664062, 549.8488159179688, 618.3997802734375 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 549, 608, 559, 618 ], "content": "u_{y}", "score": 0.83, "type": "inline_equation" } ] }, { "bbox": [ 302, 617.4634399414062, 558, 629.4683837890625 ], "spans": [ { "bbox": [ 303.30682373046875, 617.4634399414062, 317.69281005859375, 629.4683837890625 ], "content": "and", "score": 1, "type": "text" }, { "bbox": [ 319, 619, 329, 629 ], "content": "u_{z}", "score": 0.86, "type": "inline_equation" }, { "bbox": [ 329.02081298828125, 617.4634399414062, 398.8287353515625, 629.4683837890625 ], "content": ", to analyze the e", "score": 1, "type": "text" }, { "bbox": [ 398.82781982421875, 619.1167602539062, 404.8053894042969, 629.079345703125 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 404.8048095703125, 617.4634399414062, 558.4281616210938, 629.4683837890625 ], "content": "ect of the compression alone. To vali-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 628.4224243164062, 558, 640.4273681640625 ], "spans": [ { "bbox": [ 303.30682373046875, 628.4224243164062, 558.4290161132812, 640.4273681640625 ], "content": "date these assumptions, in Figure 6 we plot the relevant physical", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 639.3814697265625, 558, 651.3864135742188 ], "spans": [ { "bbox": [ 303.30682373046875, 639.3814697265625, 373.01507568359375, 651.3864135742188 ], "content": "quantities at time", "score": 1, "type": "text" }, { "bbox": [ 373.01507568359375, 639.3814697265625, 376.04083251953125, 651.2767944335938 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 375, 640, 405, 650 ], "content": "t=0.7", "score": 0.8, "type": "inline_equation" }, { "bbox": [ 405.3020935058594, 639.3814697265625, 531.3687744140625, 651.3864135742188 ], "content": " Myr along a ray parallel to the", "score": 1, "type": "text" }, { "bbox": [ 533, 641, 540, 650 ], "content": "x", "score": 0.79, "type": "inline_equation" }, { "bbox": [ 539.3181762695312, 639.3814697265625, 558.4244995117188, 651.3864135742188 ], "content": " axis", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 650.3404541015625, 558, 662.3453979492188 ], "spans": [ { "bbox": [ 303.3067626953125, 650.3404541015625, 558.428955078125, 662.3453979492188 ], "content": "passing through a region in which this amplification becomes", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 661.2994384765625, 558, 673.3043823242188 ], "spans": [ { "bbox": [ 303.3067626953125, 661.2994384765625, 558.428955078125, 673.3043823242188 ], "content": "large at later evolutionary times. In the top panel, the shock front", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 672.2574462890625, 558, 684.2623901367188 ], "spans": [ { "bbox": [ 303.3067626953125, 672.2574462890625, 558.4288940429688, 684.2623901367188 ], "content": "and condensed region are clearly visible in the gas density pro-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 683.2164306640625, 558, 695.2213745117188 ], "spans": [ { "bbox": [ 303.3067626953125, 683.2164306640625, 558.4290771484375, 695.2213745117188 ], "content": "file. The middle panel shows that, in addition to the discontinuity", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 694.1754150390625, 558, 707.6753540039062 ], "spans": [ { "bbox": [ 303.3067626953125, 694.1754150390625, 436.84539794921875, 706.1803588867188 ], "content": "at the shocks, the inflow velocity", "score": 1, "type": "text" }, { "bbox": [ 438, 696, 450, 705 ], "content": "u_{x}", "score": 0.85, "type": "inline_equation" }, { "bbox": [ 448.3121032714844, 694.1754150390625, 558.4247436523438, 707.6753540039062 ], "content": " smoothly decreases down-", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 705.1344604492188, 558, 717.139404296875 ], "spans": [ { "bbox": [ 303.3067321777344, 705.1344604492188, 558.428955078125, 717.139404296875 ], "content": "stream from the shock, in sync with the density increase. Also,", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 716.0934448242188, 558, 728.098388671875 ], "spans": [ { "bbox": [ 302, 718, 312, 728 ], "content": "u_{y}", "score": 0.71, "type": "inline_equation" }, { "bbox": [ 311.8827209472656, 717.5206909179688, 314.3733825683594, 727.4833374023438 ], "content": ",", "score": 1, "type": "text" }, { "bbox": [ 314.3733825683594, 716.0934448242188, 319.3457336425781, 727.98876953125 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 318, 717, 348, 727 ], "content": "u_{z}\\,\\approx\\,0", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 347.4330139160156, 716.0934448242188, 482.147216796875, 728.098388671875 ], "content": ", in agreement with our assumpti", "score": 1, "type": "text" }, { "bbox": [ 495.9852600097656, 716.0934448242188, 558.4208984375, 728.098388671875 ], "content": ". Finally, in the", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 727, 558, 740.5513916015625 ], "spans": [ { "bbox": [ 303.3067321777344, 727.0524291992188, 481.1788635253906, 739.057373046875 ], "content": "bottom panel, we see that the fluctuation of", "score": 1, "type": "text" }, { "bbox": [ 483, 727, 495, 738 ], "content": "B_{x}", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 494.2731018066406, 727.0524291992188, 558.4292602539062, 740.5513916015625 ], "content": " remains within", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 738, 558, 750.0164184570312 ], "spans": [ { "bbox": [ 302, 738, 333, 749 ], "content": "\\lesssim\\,20\\%", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 332.7591552734375, 738.011474609375, 558.421875, 750.0164184570312 ], "content": " of its mean value, so it is negligible to the first order.", "score": 1, "type": "text" } ] }, { "bbox": [ 302, 748.970458984375, 558, 761 ], "spans": [ { "bbox": [ 303.30670166015625, 748.970458984375, 413.0945129394531, 760.9754028320312 ], "content": "Therefore, the assumptions", "score": 1, "type": "text" }, { "bbox": [ 413.0945129394531, 748.970458984375, 416.74169921875, 760.8657836914062 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 415, 749, 463, 761 ], "content": "B_{y}\\,=\\,B_{y}(x)", "score": 0.76, "type": "inline_equation" }, { "bbox": [ 462.6882629394531, 748.970458984375, 465.1789245605469, 760.9754028320312 ], "content": ",", "score": 1, "type": "text" }, { "bbox": [ 465.1789245605469, 748.970458984375, 468.8227233886719, 760.8657836914062 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 467, 749, 500, 760 ], "content": "B_{x}\\,=\\,C", "score": 0.59, "type": "inline_equation" }, { "bbox": [ 500.4847412109375, 748.970458984375, 530.6116943359375, 760.9754028320312 ], "content": ", where", "score": 1, "type": "text" }, { "bbox": [ 530.6116943359375, 748.970458984375, 533.6547241210938, 760.8657836914062 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 533, 749, 541, 759 ], "content": "C", "score": 0.78, "type": "inline_equation" }, { "bbox": [ 540.2998046875, 748.970458984375, 558.427734375, 760.9754028320312 ], "content": " is a", "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 174, 34, 420, 43 ], "lines": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "spans": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "content": "Granda-Muñoz et al.: Magnetic field alignment in interstellar clouds", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 456, 771, 558, 779 ], "lines": [ { "bbox": [ 455.1949157714844, 769.8160400390625, 558.4251098632812, 780.6205444335938 ], "spans": [ { "bbox": [ 455.1949157714844, 769.8160400390625, 558.4251098632812, 780.6205444335938 ], "content": "Article number, page 5 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 4, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 37, 54, 558, 419 ], "blocks": [ { "bbox": [ 92, 54, 503, 363 ], "lines": [ { "bbox": [ 92, 54, 503, 363 ], "spans": [ { "bbox": [ 92, 54, 503, 363 ], "image_path": "70d48a8caa72e2a1fb2dba440b843dccd872512362f2236fb151e9e6e515c87a.jpg", "score": 0.9999694228172302, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 37, 370, 558, 419 ], "lines": [ { "bbox": [ 36.849998474121094, 369.34027099609375, 558.4281616210938, 381.0055847167969 ], "spans": [ { "bbox": [ 36.849998474121094, 369.34027099609375, 60.386802673339844, 381.0055847167969 ], "content": "Fig. 2.", "score": 1, "type": "text" }, { "bbox": [ 60.386802673339844, 369.6630859375, 558.4281616210938, 380.46759033203125 ], "content": " The density structure and magnetic field lines of the region R1 are shown after 5 Myr of evolution. The magnetic field lines are colored by", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 379.6260986328125, 558.42529296875, 390.43060302734375 ], "spans": [ { "bbox": [ 36.849998474121094, 379.6260986328125, 558.42529296875, 390.43060302734375 ], "content": "the Alfvénic Mach number. Note that at this evolution time, magnetic field lines are almost perpendicular to their original orientation along the", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 389.589111328125, 558.4230346679688, 400.39361572265625 ], "spans": [ { "bbox": [ 36, 391, 42, 398 ], "content": "x", "score": 0.73, "type": "inline_equation" }, { "bbox": [ 41.28008270263672, 389.589111328125, 558.4230346679688, 400.39361572265625 ], "content": " axis and the change from superalfvénic to transalfvénic of magnetic field lines across the shock. The dark-shaded regions at both sides of the", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 399.5511169433594, 558.4254760742188, 410.3556213378906 ], "spans": [ { "bbox": [ 36.849998474121094, 399.5511169433594, 558.4254760742188, 410.3556213378906 ], "content": "center are the shock fronts where magnetic field lines start to bend. We provide an animation showing the evolution of this region as supplementary", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 409.5141296386719, 68.47449493408203, 420.3186340332031 ], "spans": [ { "bbox": [ 36.849998474121094, 409.5141296386719, 68.47449493408203, 420.3186340332031 ], "content": "material.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 36, 436.59661865234375, 291, 461.0545349121094 ], "lines": [ { "bbox": [ 36, 436.59661865234375, 291, 448.6015625 ], "spans": [ { "bbox": [ 36.849998474121094, 436.59661865234375, 62.304439544677734, 448.6015625 ], "content": "consta", "score": 1, "type": "text" }, { "bbox": [ 72.54598236083984, 436.59661865234375, 75.4949951171875, 448.4919738769531 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 74, 437, 118, 448 ], "content": "u_{x}=u_{x}(x)", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 118.53955078125, 436.59661865234375, 141.692626953125, 448.6015625 ], "content": ", with", "score": 1, "type": "text" }, { "bbox": [ 143, 437, 192, 448 ], "content": "\\partial u_{x}/\\partial x<0", "score": 0.8, "type": "inline_equation" }, { "bbox": [ 191.6802978515625, 436.59661865234375, 194.1709442138672, 448.6015625 ], "content": ",", "score": 1, "type": "text" }, { "bbox": [ 194.1709442138672, 436.59661865234375, 197.12001037597656, 448.4919738769531 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 196, 437, 240, 448 ], "content": "u_{y},u_{z}\\,\\rightarrow\\,0", "score": 0.81, "type": "inline_equation" }, { "bbox": [ 239.85430908203125, 436.59661865234375, 291.9686279296875, 448.6015625 ], "content": ", and solving", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 447.55560302734375, 214.99986267089844, 461.0545349121094 ], "spans": [ { "bbox": [ 36.85002136230469, 447.55560302734375, 63.13136291503906, 459.560546875 ], "content": "for the", "score": 1, "type": "text" }, { "bbox": [ 63.13136291503906, 447.55560302734375, 72.05817413330078, 459.4509582519531 ], "content": " B", "score": 1, "type": "text" }, { "bbox": [ 71.95902252197266, 451.8112487792969, 75.05538940429688, 460.1379699707031 ], "content": "y", "score": 1, "type": "text" }, { "bbox": [ 75.05538940429688, 447.55560302734375, 214.99986267089844, 461.0545349121094 ], "content": " component, reduce equation (5) to", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 35, 467, 139, 493 ], "lines": [ { "bbox": [ 35, 467, 139, 493 ], "spans": [ { "bbox": [ 35, 467, 139, 493 ], "content": "\\frac{\\partial B_{y}}{\\partial t}=-B_{y}\\frac{\\partial u_{x}}{\\partial x}-u_{x}\\frac{\\partial B_{y}}{\\partial x}.", "score": 0.93, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 36, 499.0665588378906, 259.58380126953125, 511.0715026855469 ], "lines": [ { "bbox": [ 36, 499.0665588378906, 259.58380126953125, 511.0715026855469 ], "spans": [ { "bbox": [ 36.84999084472656, 499.0665588378906, 259.58380126953125, 511.0715026855469 ], "content": "This equation can also be written in Lagrangian form as", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 35, 518, 103, 543 ], "lines": [ { "bbox": [ 35, 518, 103, 543 ], "spans": [ { "bbox": [ 35, 518, 103, 543 ], "content": "\\frac{d B_{y}}{d t}=-B_{y}\\frac{\\partial u_{x}}{\\partial x}.", "score": 0.92, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 36, 549.8035888671875, 291, 605.6434936523438 ], "lines": [ { "bbox": [ 36, 549.8035888671875, 291, 561.8085327148438 ], "spans": [ { "bbox": [ 36.84999084472656, 549.8035888671875, 82.03038024902344, 561.8085327148438 ], "content": "Thus, since", "score": 1, "type": "text" }, { "bbox": [ 83, 550, 130, 561 ], "content": "\\partial u_{x}/\\partial x<0", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 129.6632843017578, 549.8035888671875, 209.10507202148438, 561.8085327148438 ], "content": ", eq. (7) implies that", "score": 1, "type": "text" }, { "bbox": [ 210, 550, 239, 561 ], "content": "d B_{y}/d t", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 238.99288940429688, 549.8035888671875, 291.971435546875, 561.8085327148438 ], "content": " has the same", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 560.7625732421875, 291, 574.2615356445312 ], "spans": [ { "bbox": [ 36.850006103515625, 560.7625732421875, 64.45636749267578, 572.7675170898438 ], "content": "sign as", "score": 1, "type": "text" }, { "bbox": [ 64.45636749267578, 560.7625732421875, 67.50200653076172, 572.6578979492188 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 66, 561, 77, 573 ], "content": "B_{y}", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 77.0840072631836, 560.7625732421875, 256.7893371582031, 572.7675170898438 ], "content": ", and therefore the magnetic field component", "score": 1, "type": "text" }, { "bbox": [ 258, 561, 269, 573 ], "content": "B_{y}", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 268.91839599609375, 560.7625732421875, 291.970458984375, 574.2615356445312 ], "content": " is al-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 571.7215576171875, 291, 583.7265014648438 ], "spans": [ { "bbox": [ 36.85002136230469, 571.7215576171875, 291.97222900390625, 583.7265014648438 ], "content": "ways amplified by the downstream compressive velocity gradi-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 582.6795654296875, 291, 594.6845092773438 ], "spans": [ { "bbox": [ 36.85002136230469, 582.6795654296875, 291.9722595214844, 594.6845092773438 ], "content": "ent. This amplification results in the magnetic field aligning to", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 593.6385498046875, 205.7858123779297, 605.6434936523438 ], "spans": [ { "bbox": [ 36.85002136230469, 593.6385498046875, 205.7858123779297, 605.6434936523438 ], "content": "the condensation plane where CACs form.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 623, 203, 633 ], "lines": [ { "bbox": [ 36.85002136230469, 622.0263671875, 203.02777099609375, 633.743408203125 ], "spans": [ { "bbox": [ 36.85002136230469, 622.0263671875, 203.02777099609375, 633.743408203125 ], "content": "4.2.2. Line bending at curved interfaces", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 36, 639.381591796875, 291, 760.9755249023438 ], "lines": [ { "bbox": [ 36, 639.381591796875, 291, 651.3865356445312 ], "spans": [ { "bbox": [ 36.85002136230469, 639.381591796875, 291.9722595214844, 651.3865356445312 ], "content": "Another possible mechanism for aligning the magnetic field", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 650.340576171875, 291, 662.3455200195312 ], "spans": [ { "bbox": [ 36.85002136230469, 650.340576171875, 291.9722595214844, 662.3455200195312 ], "content": "with the density structures occurs when the collision interface", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 661.299560546875, 291, 673.3045043945312 ], "spans": [ { "bbox": [ 36.85002136230469, 661.299560546875, 291.9722900390625, 673.3045043945312 ], "content": "is curved rather than flat, as, for example, in the case of the", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 672.258544921875, 291, 684.2634887695312 ], "spans": [ { "bbox": [ 36.85002136230469, 672.258544921875, 291.97222900390625, 684.2634887695312 ], "content": "NTSI (Vishniac 1994). To investigate this, we also ran two-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 683.216552734375, 291, 695.2214965820312 ], "spans": [ { "bbox": [ 36.85002136230469, 683.216552734375, 291.9722900390625, 695.2214965820312 ], "content": "dimensional simulations with the same initial conditions and", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 694.175537109375, 291, 706.1804809570312 ], "spans": [ { "bbox": [ 36.85002136230469, 694.175537109375, 291.9722900390625, 706.1804809570312 ], "content": "physics as the three-dimensional simulation described in Sec-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 705.134521484375, 291, 717.1394653320312 ], "spans": [ { "bbox": [ 36.85002136230469, 705.134521484375, 291.9722595214844, 717.1394653320312 ], "content": "tion 2 but with a curved collision interface, obtained by adding", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 716.0935668945312, 291, 728.0985107421875 ], "spans": [ { "bbox": [ 36.85002136230469, 716.0935668945312, 291.9722595214844, 728.0985107421875 ], "content": "a sinusoidal displacement perturbation (a “bending mode” per-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 727.0525512695312, 291, 739.0574951171875 ], "spans": [ { "bbox": [ 36.85002136230469, 727.0525512695312, 291.9721984863281, 739.0574951171875 ], "content": "turbation). In the left panel of Figure 7, we show a very early", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 738.0115356445312, 291, 750.0164794921875 ], "spans": [ { "bbox": [ 36.85002136230469, 738.0115356445312, 291.9721984863281, 750.0164794921875 ], "content": "stage of this simulation. In this case, the obliqueness of the in-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 748.9705810546875, 291, 760.9755249023438 ], "spans": [ { "bbox": [ 36.85002136230469, 748.9705810546875, 291.9722595214844, 760.9755249023438 ], "content": "terface implies the existence of a component of the incoming", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 436.5965576171875, 558, 448.60150146484375 ], "spans": [ { "bbox": [ 303.3070068359375, 436.5965576171875, 558.4292602539062, 448.60150146484375 ], "content": "flow tangential to it, while the perpendicular component is re-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 447.5555419921875, 558, 459.56048583984375 ], "spans": [ { "bbox": [ 303.3070068359375, 447.5555419921875, 558.4293823242188, 459.56048583984375 ], "content": "duced across the shock. This causes the flow to change direction", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 458.5145263671875, 558, 470.51947021484375 ], "spans": [ { "bbox": [ 303.3070068359375, 458.5145263671875, 558.4290161132812, 470.51947021484375 ], "content": "at the interface, being now oblique to the original magnetic field", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 469.4725341796875, 558, 481.47747802734375 ], "spans": [ { "bbox": [ 303.3070068359375, 469.4725341796875, 558.4290771484375, 481.47747802734375 ], "content": "direction. Being transalfvénic, this oblique post-shock flow can", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 480.4315185546875, 558, 492.43646240234375 ], "spans": [ { "bbox": [ 303.3070068359375, 480.4315185546875, 558.4293212890625, 492.43646240234375 ], "content": "begin bending the field lines. The situation is symmetric on both", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 491.3905029296875, 558, 503.39544677734375 ], "spans": [ { "bbox": [ 303.3070068359375, 491.3905029296875, 558.4291381835938, 503.39544677734375 ], "content": "sides of the layer, thus generating a shearing velocity field with", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 502.3494873046875, 558, 514.3544311523438 ], "spans": [ { "bbox": [ 303.3070068359375, 502.3494873046875, 498.7630920410156, 514.3544311523438 ], "content": "opposite directions at opposite sides due to the di", "score": 1, "type": "text" }, { "bbox": [ 498.76702880859375, 504.0028076171875, 504.7445983886719, 513.9653930664062 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 504.7450256347656, 502.3494873046875, 558.423583984375, 514.3544311523438 ], "content": "erent concav-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 513.3084716796875, 558, 525.3134155273438 ], "spans": [ { "bbox": [ 303.3070068359375, 513.3084716796875, 558.42919921875, 525.3134155273438 ], "content": "ity of the collision interface. This generates an “S” shape of the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 524.2674560546875, 558, 536.2723999023438 ], "spans": [ { "bbox": [ 303.3070068359375, 524.2674560546875, 558.4293212890625, 536.2723999023438 ], "content": "magnetic field lines across the shocked layer. A later stage of", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 535.2264404296875, 558, 547.2313842773438 ], "spans": [ { "bbox": [ 303.3070068359375, 535.2264404296875, 558.4291381835938, 547.2313842773438 ], "content": "this simulation is shown in the right panel of Figure 7, showing", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 546.1854248046875, 558, 558.1903686523438 ], "spans": [ { "bbox": [ 303.3070068359375, 546.1854248046875, 558.4293823242188, 558.1903686523438 ], "content": "that the flow tends to be subalfvénic in the condensed regions.", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 557.1444091796875, 558, 569.1493530273438 ], "spans": [ { "bbox": [ 303.3070068359375, 557.1444091796875, 519.4454345703125, 569.1493530273438 ], "content": "For this collision interface, the line-bending analysis di", "score": 1, "type": "text" }, { "bbox": [ 519.447998046875, 558.7977294921875, 525.425537109375, 568.7603149414062 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 525.426025390625, 557.1444091796875, 558.4222412109375, 569.1493530273438 ], "content": "ers from", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 568.1033935546875, 558, 580.1083374023438 ], "spans": [ { "bbox": [ 303.3070068359375, 568.1033935546875, 558.4293823242188, 580.1083374023438 ], "content": "that described in Section 4.2. In this case, we will have a ve-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 579.0614013671875, 558, 591.0663452148438 ], "spans": [ { "bbox": [ 303.3070068359375, 579.0614013671875, 558.4291381835938, 591.0663452148438 ], "content": "locity field like the one represented in Figure 8, where the left", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 590.0203857421875, 558, 602.0253295898438 ], "spans": [ { "bbox": [ 303.3070068359375, 590.0203857421875, 558.42919921875, 602.0253295898438 ], "content": "panel represents an unperturbed downstream magnetic field line", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 600.9793701171875, 558, 612.9843139648438 ], "spans": [ { "bbox": [ 303.3070068359375, 600.9793701171875, 558.4290161132812, 612.9843139648438 ], "content": "and the right panel represents a perturbed one. In the left panel,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 611.9384155273438, 558, 623.943359375 ], "spans": [ { "bbox": [ 303.3070068359375, 611.9384155273438, 558.4293212890625, 623.943359375 ], "content": "we consider a local system of coordinates centered at the point", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 622.8973999023438, 558, 636.3963623046875 ], "spans": [ { "bbox": [ 303.3070068359375, 622.8973999023438, 342.1412048339844, 634.90234375 ], "content": "where the", "score": 1, "type": "text" }, { "bbox": [ 343, 624, 353, 635 ], "content": "u_{y}", "score": 0.86, "type": "inline_equation" }, { "bbox": [ 352.54736328125, 622.8973999023438, 558.4288330078125, 636.3963623046875 ], "content": " is maximum. The magnetic field line is represented", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 633.8563842773438, 558, 645.861328125 ], "spans": [ { "bbox": [ 303.3070068359375, 633.8563842773438, 353.4188537597656, 645.861328125 ], "content": "in green, the", "score": 1, "type": "text" }, { "bbox": [ 355, 636, 362, 644 ], "content": "x", "score": 0.73, "type": "inline_equation" }, { "bbox": [ 361.1570129394531, 633.8563842773438, 503.79144287109375, 645.861328125 ], "content": "-axis is parallel to the field line, the", "score": 1, "type": "text" }, { "bbox": [ 505, 636, 512, 645 ], "content": "y", "score": 0.73, "type": "inline_equation" }, { "bbox": [ 511.00201416015625, 633.8563842773438, 558.4240112304688, 645.861328125 ], "content": "-axis is per-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 644.8154296875, 558, 656.8203735351562 ], "spans": [ { "bbox": [ 303.3070068359375, 644.8154296875, 558.4292602539062, 656.8203735351562 ], "content": "pendicular to it, and the velocity field is represented by black", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 655.7744140625, 558, 668 ], "spans": [ { "bbox": [ 303.3070068359375, 655.7744140625, 394.39501953125, 667.7793579101562 ], "content": "arrows. Thus, initially,", "score": 1, "type": "text" }, { "bbox": [ 396, 656, 428, 668 ], "content": "B_{y}\\,=\\,0", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 427.1573181152344, 655.7744140625, 444.77117919921875, 667.7793579101562 ], "content": " and", "score": 1, "type": "text" }, { "bbox": [ 444.77117919921875, 655.7744140625, 448.3580322265625, 667.6697387695312 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 447, 656, 480, 667 ], "content": "B_{x}\\,=\\,C", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 479.7940368652344, 655.7744140625, 509.8611755371094, 667.7793579101562 ], "content": ", where", "score": 1, "type": "text" }, { "bbox": [ 509.8611755371094, 655.7744140625, 512.841064453125, 667.6697387695312 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 512, 656, 521, 665 ], "content": "C", "score": 0.78, "type": "inline_equation" }, { "bbox": [ 519.4861450195312, 655.7744140625, 558.4248657226562, 667.7793579101562 ], "content": " is a con-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 666.7333984375, 558, 679 ], "spans": [ { "bbox": [ 303.30706787109375, 666.7333984375, 399.7848205566406, 678.7383422851562 ], "content": "stant. Then, considering", "score": 1, "type": "text" }, { "bbox": [ 401, 669, 412, 678 ], "content": "u_{x}", "score": 0.47, "type": "inline_equation" }, { "bbox": [ 411.5950622558594, 666.7333984375, 414.0857238769531, 678.7383422851562 ], "content": ",", "score": 1, "type": "text" }, { "bbox": [ 415, 668, 447, 678 ], "content": "u_{z}\\rightarrow0", "score": 0.83, "type": "inline_equation" }, { "bbox": [ 446.6263427734375, 666.7333984375, 466.36224365234375, 678.7383422851562 ], "content": ", and", "score": 1, "type": "text" }, { "bbox": [ 466.36224365234375, 666.7333984375, 469.2230529785156, 678.6287231445312 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 468, 667, 511, 679 ], "content": "u_{y}=u_{y}(x)", "score": 0.93, "type": "inline_equation" }, { "bbox": [ 511.2005615234375, 666.7333984375, 558.42333984375, 678.7383422851562 ], "content": ", we obtain,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 677.6923828125, 376.07379150390625, 689.6973266601562 ], "spans": [ { "bbox": [ 303.3070068359375, 677.6923828125, 376.07379150390625, 689.6973266601562 ], "content": "from equation (5),", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 436.5965576171875, 558, 689.6973266601562 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 302, 695, 362, 721 ], "lines": [ { "bbox": [ 302, 695, 362, 721 ], "spans": [ { "bbox": [ 302, 695, 362, 721 ], "content": "\\frac{\\partial B_{y}}{\\partial t}=B_{x}\\frac{\\partial u_{y}}{\\partial x}.", "score": 0.92, "type": "interline_equation" } ] } ], "type": "interline_equation" }, { "bbox": [ 303, 727.0525512695312, 558, 761 ], "lines": [ { "bbox": [ 303, 727.0525512695312, 558, 739.0574951171875 ], "spans": [ { "bbox": [ 303.30694580078125, 727.0525512695312, 532.5363159179688, 739.0574951171875 ], "content": "We can then consider the previous equation in three di", "score": 1, "type": "text" }, { "bbox": [ 532.531982421875, 728.7058715820312, 538.509521484375, 738.66845703125 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 538.510009765625, 727.0525512695312, 558.42529296875, 739.0574951171875 ], "content": "erent", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 738, 558, 750.0164794921875 ], "spans": [ { "bbox": [ 303.3070068359375, 738.0115356445312, 337.7775573730469, 750.0164794921875 ], "content": "regions i", "score": 1, "type": "text" }, { "bbox": [ 390.1608581542969, 738.0115356445312, 418.99261474609375, 750.0164794921875 ], "content": "el of Fi", "score": 1, "type": "text" }, { "bbox": [ 470.2900085449219, 738.0115356445312, 512.8103637695312, 750.0164794921875 ], "content": " the region", "score": 1, "type": "text" }, { "bbox": [ 514, 738, 556, 749 ], "content": "x\\in[x_{1},0]", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 555.934814453125, 738.0115356445312, 558.4254760742188, 750.0164794921875 ], "content": ",", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 748.9705810546875, 558, 761 ], "spans": [ { "bbox": [ 303.30694580078125, 748.9705810546875, 335.7252502441406, 760.9755249023438 ], "content": "we have", "score": 1, "type": "text" }, { "bbox": [ 337, 749, 388, 761 ], "content": "\\partial u_{y}/\\partial x\\;>\\;0", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 377.6401672363281, 748.9705810546875, 418.1480712890625, 760.9755249023438 ], "content": " 0, and so", "score": 1, "type": "text" }, { "bbox": [ 419, 749, 470, 761 ], "content": "\\partial B_{y}/\\partial t\\;>\\;0", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 459.4171447753906, 748.9705810546875, 558.425537109375, 760.9755249023438 ], "content": " 0. Second, in the region", "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 37, 771, 139, 779 ], "lines": [ { "bbox": [ 36.850006103515625, 769.8155517578125, 140.08016967773438, 780.6200561523438 ], "spans": [ { "bbox": [ 36.850006103515625, 769.8155517578125, 140.08016967773438, 780.6200561523438 ], "content": "Article number, page 6 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 241, 34, 354, 43 ], "lines": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "spans": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 247.45773315429688, 43.38558578491211 ], "content": "A", "score": 1, "type": "text" }, { "bbox": [ 247.45700073242188, 34.06907653808594, 254.432861328125, 43.03547668457031 ], "content": "&", "score": 1, "type": "text" }, { "bbox": [ 254.43299865722656, 32.58107376098633, 288.55010986328125, 43.38558578491211 ], "content": "A proofs:", "score": 1, "type": "text" }, { "bbox": [ 288.55010986328125, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "content": " manuscript no. aa", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 5, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 36, 100, 291, 511 ], "blocks": [ { "bbox": [ 40, 100, 271, 444 ], "lines": [ { "bbox": [ 40, 100, 271, 444 ], "spans": [ { "bbox": [ 40, 100, 271, 444 ], "image_path": "589cf2f214965f4b5a2a42f180b28d9214ef254adce92adc06c7af46bb46d9a1.jpg", "score": 0.9999798536300659, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 36, 471, 291, 511 ], "lines": [ { "bbox": [ 36.849998474121094, 470.33526611328125, 291.9695739746094, 482.0005798339844 ], "spans": [ { "bbox": [ 36.849998474121094, 470.33526611328125, 60.91581726074219, 482.0005798339844 ], "content": "Fig. 3.", "score": 1, "type": "text" }, { "bbox": [ 60.91581726074219, 470.6580810546875, 174.13414001464844, 481.46258544921875 ], "content": " Top: HRO diagram for four di", "score": 1, "type": "text" }, { "bbox": [ 174.13299560546875, 472.1460876464844, 179.51283264160156, 481.11248779296875 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 179.51300048828125, 470.6580810546875, 291.9695739746094, 481.46258544921875 ], "content": "erent number density intervals.", "score": 1, "type": "text" } ] }, { "bbox": [ 36.850006103515625, 480.62109375, 291.9709777832031, 491.42559814453125 ], "spans": [ { "bbox": [ 36.850006103515625, 480.62109375, 291.9709777832031, 491.42559814453125 ], "content": "Bottom: shape parameter (see eq. 4.3) versus number density. As we", "score": 1, "type": "text" } ] }, { "bbox": [ 36.850006103515625, 490.5830993652344, 291.970947265625, 501.3876037597656 ], "spans": [ { "bbox": [ 36.850006103515625, 490.5830993652344, 291.970947265625, 501.3876037597656 ], "content": "can see in this figure, the magnetic field is increasingly parallel for the", "score": 1, "type": "text" } ] }, { "bbox": [ 36.850006103515625, 500.5461120605469, 291.9709167480469, 511.3506164550781 ], "spans": [ { "bbox": [ 36.850006103515625, 500.5461120605469, 291.9709167480469, 511.3506164550781 ], "content": "first three intervals, but there is a change in the trend for the last interval.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 36, 529.7105712890625, 291, 559.27978515625 ], "lines": [ { "bbox": [ 36, 529.7105712890625, 291, 541.7155151367188 ], "spans": [ { "bbox": [ 36, 530, 77, 541 ], "content": "x\\in[0,x_{2}]", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 77.4885482788086, 529.7105712890625, 119.6502685546875, 541.7155151367188 ], "content": ", we see th", "score": 1, "type": "text" }, { "bbox": [ 128, 530, 180, 541 ], "content": "\\partial u_{y}/\\partial x\\ <\\ 0", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 179.54129028320312, 529.7105712890625, 237.43397521972656, 541.7155151367188 ], "content": ", and therefore", "score": 1, "type": "text" }, { "bbox": [ 237.43397521972656, 531.1378173828125, 239.95700073242188, 541.1004638671875 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 239, 530, 290, 541 ], "content": "\\partial B_{y}/\\partial t\\ <\\ 0", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 289.477294921875, 529.7105712890625, 291.96795654296875, 541.7155151367188 ], "content": ".", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 540.6696166992188, 291, 559.27978515625 ], "spans": [ { "bbox": [ 36.850006103515625, 540.6696166992188, 118.15476989746094, 552.674560546875 ], "content": "Finally, in the region", "score": 1, "type": "text" }, { "bbox": [ 119, 541, 218, 552 ], "content": "x\\in\\check{[x_{2},x_{3}]},\\partial u_{y}/\\partial x\\,>\\,0", "score": 0.77, "type": "inline_equation" }, { "bbox": [ 125.08039855957031, 541.2474365234375, 133.21795654296875, 559.27978515625 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 208.30221557617188, 540.6696166992188, 230.2953338623047, 552.674560546875 ], "content": " 0, th", "score": 1, "type": "text" }, { "bbox": [ 240, 541, 290, 552 ], "content": "\\partial\\dot{B_{y}}/\\partial t\\;>\\;0", "score": 0.87, "type": "inline_equation" } ] } ], "type": "text" }, { "bbox": [ 36, 551.7526245117188, 291, 596.634521484375 ], "lines": [ { "bbox": [ 51, 551.7526245117188, 291, 563.757568359375 ], "spans": [ { "bbox": [ 51.79400634765625, 551.7526245117188, 227.6339111328125, 563.757568359375 ], "content": "Therefore, for these three regions, the sign of", "score": 1, "type": "text" }, { "bbox": [ 229, 552, 257, 563 ], "content": "\\partial B_{y}/\\partial t", "score": 0.9, "type": "inline_equation" }, { "bbox": [ 256.8305969238281, 551.7526245117188, 291.9678955078125, 563.757568359375 ], "content": " explains", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 562.7116088867188, 291, 574.716552734375 ], "spans": [ { "bbox": [ 36.85002136230469, 562.7116088867188, 252.42076110839844, 574.716552734375 ], "content": "the deformation of the magnetic field line having an ", "score": 1, "type": "text" }, { "bbox": [ 251, 563, 267, 573 ], "content": "\"S\"", "score": 0.47, "type": "inline_equation" }, { "bbox": [ 266.0894470214844, 562.7116088867188, 291.9722900390625, 574.716552734375 ], "content": " shape", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 573.6705932617188, 291, 585.675537109375 ], "spans": [ { "bbox": [ 36.85002136230469, 573.6705932617188, 291.97222900390625, 585.675537109375 ], "content": "morphology where each convex part aligns the direction of the", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 584.6295776367188, 190.9913330078125, 596.634521484375 ], "spans": [ { "bbox": [ 36.85002136230469, 584.6295776367188, 190.9913330078125, 596.634521484375 ], "content": "flow (See Figures 7 (left panel) and 8).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 615, 104, 626 ], "lines": [ { "bbox": [ 36.85002136230469, 614.6279296875, 104.09942626953125, 627.6446533203125 ], "spans": [ { "bbox": [ 36.85002136230469, 614.6279296875, 104.09942626953125, 627.6446533203125 ], "content": "5. Discussion", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 36, 632.92236328125, 291, 655.5984497070312 ], "lines": [ { "bbox": [ 36, 632.92236328125, 291, 644.639404296875 ], "spans": [ { "bbox": [ 36.85002136230469, 632.92236328125, 289.33465576171875, 644.639404296875 ], "content": "5.1. The role of the pre-condensation shock in the alignment", "score": 1, "type": "text" } ] }, { "bbox": [ 55.955020904541016, 643.8814086914062, 140.65284729003906, 655.5984497070312 ], "spans": [ { "bbox": [ 55.955020904541016, 643.8814086914062, 140.65284729003906, 655.5984497070312 ], "content": "of the magnetic field", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 661.1746215820312, 291, 738.9335327148438 ], "lines": [ { "bbox": [ 36, 661.1746215820312, 291, 673.1795654296875 ], "spans": [ { "bbox": [ 36.85002136230469, 661.1746215820312, 291.9723205566406, 673.1795654296875 ], "content": "As we have seen from the three-dimensional simulation, mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 672.1336059570312, 291, 684.1385498046875 ], "spans": [ { "bbox": [ 36.85002136230469, 672.1336059570312, 291.9722900390625, 684.1385498046875 ], "content": "netic field lines change their orientation at the shock front due", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 683.0925903320312, 291, 695.0975341796875 ], "spans": [ { "bbox": [ 36.85002136230469, 683.0925903320312, 67.74404907226562, 695.0975341796875 ], "content": "to the e", "score": 1, "type": "text" }, { "bbox": [ 67.74002075195312, 684.7459106445312, 73.71758270263672, 694.70849609375 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 73.7170181274414, 683.0925903320312, 291.9676513671875, 695.0975341796875 ], "content": "ect of the fast MHD shock. The passage of the shock", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 694.0516357421875, 291, 706.0565795898438 ], "spans": [ { "bbox": [ 36.85001754760742, 694.0516357421875, 291.9723205566406, 706.0565795898438 ], "content": "front yields an irregular amplification of the parallel component", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 705.0106201171875, 291, 717.0155639648438 ], "spans": [ { "bbox": [ 36.85001754760742, 705.0106201171875, 291.9722595214844, 717.0155639648438 ], "content": "to it, which results in the early downstream shocked magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 715.9696044921875, 291, 727.9745483398438 ], "spans": [ { "bbox": [ 36.85001754760742, 715.9696044921875, 291.9722900390625, 727.9745483398438 ], "content": "field line pattern. Afterward, magnetic field lines are dragged", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 726.9285888671875, 226.62762451171875, 738.9335327148438 ], "spans": [ { "bbox": [ 36.85001754760742, 726.9285888671875, 226.62762451171875, 738.9335327148438 ], "content": "and folded by the downstream decelerating gas.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 738.0115966796875, 291, 760.9755249023438 ], "lines": [ { "bbox": [ 51, 738.0115966796875, 291, 750.0165405273438 ], "spans": [ { "bbox": [ 51.79401779174805, 738.0115966796875, 291.9723815917969, 750.0165405273438 ], "content": "In this work, we do not vary the relative orientation between", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 748.9705810546875, 291, 760.9755249023438 ], "spans": [ { "bbox": [ 36.85001754760742, 748.9705810546875, 291.9722595214844, 760.9755249023438 ], "content": "the upstream magnetic field and the shock front of the system in", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 56.56658935546875, 558, 68.57152557373047 ], "spans": [ { "bbox": [ 303.3070068359375, 56.56658935546875, 558.4292602539062, 68.57152557373047 ], "content": "the initial condition. However, there is a small range of angles", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 67.52557373046875, 558, 79.53050994873047 ], "spans": [ { "bbox": [ 303.3070068359375, 67.52557373046875, 558.4292602539062, 79.53050994873047 ], "content": "between them due to the departure of the shock front from a per-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 78.48455810546875, 558, 90.48949432373047 ], "spans": [ { "bbox": [ 303.3070068359375, 78.48455810546875, 558.4293212890625, 90.48949432373047 ], "content": "fectly flat plane due to the velocity fluctuations. The influence of", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 89.44354248046875, 558, 101.44847869873047 ], "spans": [ { "bbox": [ 303.3070068359375, 89.44354248046875, 558.4293212890625, 101.44847869873047 ], "content": "the initial angle between the magnetic field and the shock front", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 100.40252685546875, 558, 112.40746307373047 ], "spans": [ { "bbox": [ 303.3070068359375, 100.40252685546875, 558.4292602539062, 112.40746307373047 ], "content": "has been studied in Inoue & Inutsuka (2016), who found that the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 111.36151123046875, 558, 123.36644744873047 ], "spans": [ { "bbox": [ 303.3070068359375, 111.36151123046875, 558.42919921875, 123.36644744873047 ], "content": "number of CACs or fibers oriented perpendicular to the magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 122.32049560546875, 558, 134.32542419433594 ], "spans": [ { "bbox": [ 303.3070068359375, 122.32049560546875, 558.42919921875, 134.32542419433594 ], "content": "field increases with the orientation angle of the upstream mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 133.27947998046875, 558, 145.28440856933594 ], "spans": [ { "bbox": [ 303.3070068359375, 133.27947998046875, 558.42919921875, 145.28440856933594 ], "content": "netic field and the shock front for simulations without an initial", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 144.23846435546875, 558, 156.24339294433594 ], "spans": [ { "bbox": [ 303.3070068359375, 144.23846435546875, 558.4291381835938, 156.24339294433594 ], "content": "velocity dispersion. However, when an initial velocity dispersion", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 155.19647216796875, 558, 167.20140075683594 ], "spans": [ { "bbox": [ 303.3070068359375, 155.19647216796875, 558.4291381835938, 167.20140075683594 ], "content": "is included, the authors find that fibers tend to be oriented in the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 166.15545654296875, 558, 178.16038513183594 ], "spans": [ { "bbox": [ 303.3070068359375, 166.15545654296875, 558.4292602539062, 178.16038513183594 ], "content": "direction of the local magnetic field. For this reason, they con-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 177.11444091796875, 558, 189.11936950683594 ], "spans": [ { "bbox": [ 303.3070068359375, 177.11444091796875, 558.42919921875, 189.11936950683594 ], "content": "clude that the formation mechanism of fibers and their alignment", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 188.07342529296875, 558, 200.07835388183594 ], "spans": [ { "bbox": [ 303.3070068359375, 188.07342529296875, 558.4292602539062, 200.07835388183594 ], "content": "with the local magnetic field is the turbulent shear strain, which", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 199.03240966796875, 558, 211.03733825683594 ], "spans": [ { "bbox": [ 303.3070068359375, 199.03240966796875, 558.4291381835938, 211.03733825683594 ], "content": "was also identified as the reason for the elongation of filamentary", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 209.99139404296875, 419.1221923828125, 221.99632263183594 ], "spans": [ { "bbox": [ 303.3070068359375, 209.99139404296875, 419.1221923828125, 221.99632263183594 ], "content": "CACs by Hennebelle (2013).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 56.56658935546875, 558, 221.99632263183594 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 303, 222.597412109375, 558, 278.43829345703125 ], "lines": [ { "bbox": [ 318, 222.597412109375, 558, 234.6023406982422 ], "spans": [ { "bbox": [ 318.2510070800781, 222.597412109375, 558.4293212890625, 234.6023406982422 ], "content": "It is important to mention that the role of MHD shocks in the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 233.556396484375, 558, 245.5613250732422 ], "spans": [ { "bbox": [ 303.3070068359375, 233.556396484375, 558.42919921875, 245.5613250732422 ], "content": "evolution of magnetic field lines that yield the final correlation", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 244.515380859375, 558, 256.52032470703125 ], "spans": [ { "bbox": [ 303.3070068359375, 244.515380859375, 558.42919921875, 256.52032470703125 ], "content": "has not been explored before. In this work, we identified that", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 255.474365234375, 558, 267.47930908203125 ], "spans": [ { "bbox": [ 303.3070068359375, 255.474365234375, 558.4291381835938, 267.47930908203125 ], "content": "a fast MHD shock produces magnetic field fluctuations that get", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 266.433349609375, 535.1765747070312, 278.43829345703125 ], "spans": [ { "bbox": [ 303.3070068359375, 266.433349609375, 535.1765747070312, 278.43829345703125 ], "content": "amplified between the shock front and condensation layer.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 297, 555, 328 ], "lines": [ { "bbox": [ 303.3070068359375, 296.2811279296875, 553.4537963867188, 307.9981689453125 ], "spans": [ { "bbox": [ 303.3070068359375, 296.2811279296875, 553.4537963867188, 307.9981689453125 ], "content": "5.2. The role of the velocity gradient in aligning the field and", "score": 1, "type": "text" } ] }, { "bbox": [ 322.4110107421875, 307.2401123046875, 540.2269897460938, 318.9571533203125 ], "spans": [ { "bbox": [ 322.4110107421875, 307.2401123046875, 540.2269897460938, 318.9571533203125 ], "content": "density structures. The case of gravitationally-driven", "score": 1, "type": "text" } ] }, { "bbox": [ 322.4110107421875, 318.1990966796875, 387.0630187988281, 329.9161376953125 ], "spans": [ { "bbox": [ 322.4110107421875, 318.1990966796875, 387.0630187988281, 329.9161376953125 ], "content": "cloud formation", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 303, 337.01531982421875, 558, 403.814208984375 ], "lines": [ { "bbox": [ 303, 337.01531982421875, 558, 349.020263671875 ], "spans": [ { "bbox": [ 303.3070068359375, 337.01531982421875, 558.4293212890625, 349.020263671875 ], "content": "Soler & Hennebelle (2017) proposed that the relative orienta-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 347.97430419921875, 558, 359.979248046875 ], "spans": [ { "bbox": [ 303.3070068359375, 347.97430419921875, 523.4403686523438, 359.979248046875 ], "content": "tions between the magnetic field and density structures", "score": 1, "type": "text" }, { "bbox": [ 523.4403686523438, 349.4015808105469, 526.1890258789062, 359.3641662597656 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 525, 348, 558, 359 ], "content": "\\phi=90^{\\circ}", "score": 0.91, "type": "inline_equation" } ] }, { "bbox": [ 303, 358.93231201171875, 558, 370.937255859375 ], "spans": [ { "bbox": [ 303.3070068359375, 358.93231201171875, 317.6929931640625, 370.937255859375 ], "content": "and", "score": 1, "type": "text" }, { "bbox": [ 317.6929931640625, 360.3595886230469, 319.9909973144531, 370.3221740722656 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 319, 359, 346, 370 ], "content": "\\phi=0^{\\circ}", "score": 0.93, "type": "inline_equation" }, { "bbox": [ 348.5849914550781, 358.93231201171875, 558.4271850585938, 370.937255859375 ], "content": "might be equilibrium points. However, the reason for", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 369.89129638671875, 558, 381.896240234375 ], "spans": [ { "bbox": [ 303.3070068359375, 369.89129638671875, 558.4290771484375, 381.896240234375 ], "content": "that is unknown. In this work, we identified that it is the action of", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 380.85028076171875, 558, 392.855224609375 ], "spans": [ { "bbox": [ 303.3070068359375, 380.85028076171875, 558.4292602539062, 392.855224609375 ], "content": "a fast MHD shock and the compressive velocity resulting from", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 391.80926513671875, 543, 403.814208984375 ], "spans": [ { "bbox": [ 303.3070068359375, 391.80926513671875, 507.73956298828125, 403.814208984375 ], "content": "the gas settlement onto the dense layer that leads to", "score": 1, "type": "text" }, { "bbox": [ 507.73956298828125, 393.2365417480469, 510.23101806640625, 403.1991271972656 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 509, 392, 541, 403 ], "content": "\\phi=90^{\\circ}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 541.508056640625, 391.80926513671875, 543.9987182617188, 403.814208984375 ], "content": ".", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 404.4152526855469, 558, 591.7630004882812 ], "lines": [ { "bbox": [ 318, 404.4152526855469, 558, 416.4201965332031 ], "spans": [ { "bbox": [ 318.25103759765625, 404.4152526855469, 558.4293212890625, 416.4201965332031 ], "content": "Since we have focused on non-gravitational CACs, we have", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 415.374267578125, 558, 427.37921142578125 ], "spans": [ { "bbox": [ 303.3070373535156, 415.374267578125, 422.1806335449219, 427.37921142578125 ], "content": "not numerically explored how", "score": 1, "type": "text" }, { "bbox": [ 423, 416, 430, 426 ], "content": "\\phi", "score": 0.83, "type": "inline_equation" }, { "bbox": [ 429.969482421875, 415.374267578125, 467.13922119140625, 427.37921142578125 ], "content": " becomes", "score": 1, "type": "text" }, { "bbox": [ 468, 416, 478, 425 ], "content": "0^{\\circ}", "score": 0.82, "type": "inline_equation" }, { "bbox": [ 478.39605712890625, 415.374267578125, 558.4257202148438, 427.37921142578125 ], "content": ". However, a discus-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 426.333251953125, 558, 438.33819580078125 ], "spans": [ { "bbox": [ 303.30706787109375, 426.333251953125, 558.42919921875, 438.33819580078125 ], "content": "sion similar to that in Section 4.2.1 leads us to speculate that the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 437, 558, 449.29718017578125 ], "spans": [ { "bbox": [ 302, 437, 329, 448 ], "content": "\\phi=0^{\\circ}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 331.6390686035156, 437.292236328125, 558.4277954101562, 449.29718017578125 ], "content": "configuration may arise in the presence of a stretching ve-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 448.251220703125, 558, 460.25616455078125 ], "spans": [ { "bbox": [ 303.30706787109375, 448.251220703125, 558.4292602539062, 460.25616455078125 ], "content": "locity field, as it would be the case of the tidal flow into the grav-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 459.210205078125, 558, 471.21514892578125 ], "spans": [ { "bbox": [ 303.30706787109375, 459.210205078125, 558.42919921875, 471.21514892578125 ], "content": "itational well of a strongly self-gravitating cloud. In this case,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 470.169189453125, 558, 483.6681213378906 ], "spans": [ { "bbox": [ 302, 472, 309, 480 ], "content": "x", "score": 0.67, "type": "inline_equation" }, { "bbox": [ 308.22845458984375, 470.169189453125, 467.49090576171875, 482.17413330078125 ], "content": " would be the direction of the flow and", "score": 1, "type": "text" }, { "bbox": [ 469, 471, 481, 482 ], "content": "B_{y}", "score": 0.87, "type": "inline_equation" }, { "bbox": [ 480.0664367675781, 470.169189453125, 558.4236450195312, 483.6681213378906 ], "content": " is a magnetic field", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 481.127197265625, 558, 493.13214111328125 ], "spans": [ { "bbox": [ 303.30706787109375, 481.127197265625, 558.4292602539062, 493.13214111328125 ], "content": "perturbation perpendicular to that direction. Therefore, equation", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 492, 558, 504.09112548828125 ], "spans": [ { "bbox": [ 303.30706787109375, 492.086181640625, 494.9374694824219, 504.09112548828125 ], "content": "(7) for a positive velocity gradient implies that", "score": 1, "type": "text" }, { "bbox": [ 494.9374694824219, 492.086181640625, 498.3570556640625, 503.9815368652344 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 497, 492, 527, 504 ], "content": "d B_{y}/d t", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 525.9519653320312, 492.086181640625, 558.4227294921875, 504.09112548828125 ], "content": " has the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 503, 558, 515.0501098632812 ], "spans": [ { "bbox": [ 303.30706787109375, 503.045166015625, 367.4561767578125, 515.0501098632812 ], "content": "opposite sign to", "score": 1, "type": "text" }, { "bbox": [ 369, 503, 380, 515 ], "content": "B_{y}", "score": 0.88, "type": "inline_equation" }, { "bbox": [ 380.4080505371094, 503.045166015625, 558.4298095703125, 515.0501098632812 ], "content": ", straightening the field lines. Thus, we sug-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 514.004150390625, 558, 526.0090942382812 ], "spans": [ { "bbox": [ 303.30706787109375, 514.004150390625, 558.4290771484375, 526.0090942382812 ], "content": "gest that the induction equation in the presence of a compressive", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 524.963134765625, 558, 536.9680786132812 ], "spans": [ { "bbox": [ 303.30706787109375, 524.963134765625, 461.3536071777344, 536.9680786132812 ], "content": "or stretching velocity field leads to the", "score": 1, "type": "text" }, { "bbox": [ 461.3536071777344, 526.390380859375, 464.7560729980469, 536.35302734375 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 464, 525, 509, 536 ], "content": "\\phi\\,=\\,0,90^{\\circ}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 511.9290771484375, 524.963134765625, 558.4246215820312, 536.9680786132812 ], "content": "equilibrium", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 535.922119140625, 558, 547.9270629882812 ], "spans": [ { "bbox": [ 303.30706787109375, 535.922119140625, 558.42919921875, 547.9270629882812 ], "content": "configurations found by Soler & Hennebelle (2017), justifying", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 546.881103515625, 558, 558.8860473632812 ], "spans": [ { "bbox": [ 303.30706787109375, 546.881103515625, 558.42919921875, 558.8860473632812 ], "content": "their speculation that they may be attractors. This also suggests", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 557.840087890625, 558, 569.8450317382812 ], "spans": [ { "bbox": [ 303.30706787109375, 557.840087890625, 558.4293212890625, 569.8450317382812 ], "content": "a mechanism for the parallel alignment of the magnetic field to", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 568.799072265625, 558, 580.8040161132812 ], "spans": [ { "bbox": [ 303.30706787109375, 568.799072265625, 558.4292602539062, 580.8040161132812 ], "content": "non-self-gravitating structures and its perpendicular alignment", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 579.758056640625, 543, 591.7630004882812 ], "spans": [ { "bbox": [ 303.30706787109375, 579.758056640625, 541.463134765625, 591.7630004882812 ], "content": "to self-gravitating ones, as observed in Gómez et al. (2018).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 610, 549, 631 ], "lines": [ { "bbox": [ 303.30706787109375, 609.6058349609375, 547.8319091796875, 621.3228759765625 ], "spans": [ { "bbox": [ 303.30706787109375, 609.6058349609375, 547.8319091796875, 621.3228759765625 ], "content": "5.3. The effect of strong cooling on the development of the", "score": 1, "type": "text" } ] }, { "bbox": [ 322.41107177734375, 620.5648803710938, 343.9712219238281, 632.2819213867188 ], "spans": [ { "bbox": [ 322.41107177734375, 620.5648803710938, 343.9712219238281, 632.2819213867188 ], "content": "NTSI", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 303, 639.381103515625, 558, 760.9750366210938 ], "lines": [ { "bbox": [ 303, 639.381103515625, 558, 651.3860473632812 ], "spans": [ { "bbox": [ 303.30706787109375, 639.381103515625, 558.4295043945312, 651.3860473632812 ], "content": "Regarding the development of the NTSI, Vishniac (1994) found", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 650.340087890625, 558, 662.3450317382812 ], "spans": [ { "bbox": [ 303.30706787109375, 650.340087890625, 558.42919921875, 662.3450317382812 ], "content": "that the requirement for this instability to grow is that the dis-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 661.299072265625, 558, 673.3040161132812 ], "spans": [ { "bbox": [ 303.30706787109375, 661.299072265625, 558.4291381835938, 673.3040161132812 ], "content": "placement of the cold slab is larger than its thickness. This", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 672.257080078125, 558, 684.2620239257812 ], "spans": [ { "bbox": [ 303.30706787109375, 672.257080078125, 558.4293212890625, 684.2620239257812 ], "content": "condition can only be satisfied when there is a high compres-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 683.216064453125, 558, 695.2210083007812 ], "spans": [ { "bbox": [ 303.30706787109375, 683.216064453125, 558.4292602539062, 695.2210083007812 ], "content": "sion ratio across the shock yielding a very thin shocked layer.", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 694, 558, 715.2462768554688 ], "spans": [ { "bbox": [ 303.30706787109375, 694.175048828125, 468.9551696777344, 706.1799926757812 ], "content": "In the isothermal case, this requires that", "score": 1, "type": "text" }, { "bbox": [ 468.9551696777344, 694.175048828125, 473.1270751953125, 706.0703735351562 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 472, 694, 510, 706 ], "content": "\\mathrm{{\\dot{M}_{s}^{2}}\\ \\gg\\ 1}", "score": 0.92, "type": "inline_equation" }, { "bbox": [ 484.13885498046875, 694.7528686523438, 490.76806640625, 715.2462768554688 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 490.76806640625, 694.7528686523438, 499.9137268066406, 712.7852172851562 ], "content": "≫", "score": 1, "type": "text" }, { "bbox": [ 555.1046142578125, 694.175048828125, 558.4221801757812, 706.1799926757812 ], "content": "-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 704, 558, 717.1390380859375 ], "spans": [ { "bbox": [ 303.30706787109375, 705.1340942382812, 510.2998962402344, 717.1390380859375 ], "content": "dimensional simulation described in Section 2 has", "score": 1, "type": "text" }, { "bbox": [ 513, 704, 556, 717 ], "content": "M_{\\mathrm{s}}^{2}\\;=\\;4.0", "score": 0.92, "type": "inline_equation" } ] }, { "bbox": [ 303, 716.0930786132812, 558, 728.0980224609375 ], "spans": [ { "bbox": [ 303.3070068359375, 716.0930786132812, 558.4292602539062, 728.0980224609375 ], "content": "which is not too large. However, our simulations include strong", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 727.0520629882812, 558, 739.0570068359375 ], "spans": [ { "bbox": [ 303.3070068359375, 727.0520629882812, 558.4290161132812, 739.0570068359375 ], "content": "cooling leading to thermal instability, which produces a much", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 738.0111083984375, 558, 750.0160522460938 ], "spans": [ { "bbox": [ 303.3070068359375, 738.0111083984375, 558.4292602539062, 750.0160522460938 ], "content": "stronger compression of the condensed layer and a much thin-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 748.9700927734375, 558, 760.9750366210938 ], "spans": [ { "bbox": [ 303.3070068359375, 748.9700927734375, 558.4292602539062, 760.9750366210938 ], "content": "ner slab dimension, even for moderate Mach numbers (Vázquez-", "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 173, 34, 421, 43 ], "lines": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "spans": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "content": "Granda-Muñoz et al.: Magnetic field alignment in interstellar clouds", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 454, 770, 559, 780 ], "lines": [ { "bbox": [ 455.19500732421875, 769.81591796875, 558.4251708984375, 780.6204223632812 ], "spans": [ { "bbox": [ 455.19500732421875, 769.81591796875, 558.4251708984375, 780.6204223632812 ], "content": "Article number, page 7 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 6, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 34, 53, 560, 421 ], "blocks": [ { "bbox": [ 90, 53, 504, 364 ], "lines": [ { "bbox": [ 90, 53, 504, 364 ], "spans": [ { "bbox": [ 90, 53, 504, 364 ], "image_path": "aca9ca0eba0cfc506c1ed152a99dde59fcdfdff8ca6469b58b582da21fa829cf.jpg", "score": 0.9999658465385437, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 34, 369, 560, 421 ], "lines": [ { "bbox": [ 36.849998474121094, 369.34027099609375, 558.4263305664062, 381.0055847167969 ], "spans": [ { "bbox": [ 36.849998474121094, 369.34027099609375, 61.19377517700195, 381.0055847167969 ], "content": "Fig. 4.", "score": 1, "type": "text" }, { "bbox": [ 61.19377517700195, 369.6630859375, 558.4263305664062, 380.46759033203125 ], "content": " Regions used to compute the HRO diagram and the shape parameter shown in Figure 3. The yellow surfaces are density isocountours", "score": 1, "type": "text" } ] }, { "bbox": [ 107.58592224121094, 379, 558.429443359375, 390.43060302734375 ], "spans": [ { "bbox": [ 107.58592224121094, 379.6260986328125, 172.0812225341797, 390.43060302734375 ], "content": "s represent the m", "score": 1, "type": "text" }, { "bbox": [ 247.29139709472656, 379.6260986328125, 328.7152099609375, 390.43060302734375 ], "content": "p left panel correspon", "score": 1, "type": "text" }, { "bbox": [ 411.03564453125, 379.6260986328125, 414.43402099609375, 390.33197021484375 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 413, 379, 484, 390 ], "content": "n~\\in~[10,30]~\\,\\mathrm{cm}^{-3}", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 483.79302978515625, 379.6260986328125, 558.429443359375, 390.43060302734375 ], "content": ", the top right panel", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 389, 558.4212036132812, 406.3383483886719 ], "spans": [ { "bbox": [ 36, 389, 108, 399 ], "content": "n\\,\\in\\,[30,100]\\,\\mathrm{\\cm}^{-3}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 41.33323669433594, 390.1091613769531, 49.84602737426758, 406.3383483886719 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 108.31404113769531, 389.589111328125, 167.57298278808594, 400.39361572265625 ], "content": ", the bottom left", "score": 1, "type": "text" }, { "bbox": [ 169, 389, 246, 399 ], "content": "\\bar{n\\mathrm{~\\in~}}[100,300]~\\mathrm{cm}^{-3}", "score": 0.91, "type": "inline_equation" }, { "bbox": [ 174.9512481689453, 390.1091613769531, 183.4640350341797, 406.3383483886719 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 246.4150390625, 389.589111328125, 326.5029602050781, 400.39361572265625 ], "content": ", and the bottom right", "score": 1, "type": "text" }, { "bbox": [ 328, 389, 410, 399 ], "content": "n\\,\\in\\,[\\bar{300},1000]\\,\\,\\mathrm{cm}^{-\\bar{3}}", "score": 0.89, "type": "inline_equation" }, { "bbox": [ 333.88323974609375, 390.1091613769531, 342.3960266113281, 406.3383483886719 ], "content": " ∈", "score": 1, "type": "text" }, { "bbox": [ 409.83001708984375, 389.589111328125, 558.4212036132812, 400.39361572265625 ], "content": ". It can be seen that, for the four density", "score": 1, "type": "text" } ] }, { "bbox": [ 36.850006103515625, 399.5511169433594, 558.4254150390625, 410.3556213378906 ], "spans": [ { "bbox": [ 36.850006103515625, 399.5511169433594, 558.4254150390625, 410.3556213378906 ], "content": "intervals shown here, the magnetic field is noticeably parallel to the density structures. However, the magnetic field shows a deviation from this", "score": 1, "type": "text" } ] }, { "bbox": [ 36.850006103515625, 409.5141296386719, 528.2625122070312, 420.3186340332031 ], "spans": [ { "bbox": [ 36.850006103515625, 409.5141296386719, 528.2625122070312, 420.3186340332031 ], "content": "trend for the highest density interval in the bottom right panel. We provide animations showing these regions as complementary material.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 34, 434, 294, 594 ], "blocks": [ { "bbox": [ 39, 434, 285, 556 ], "lines": [ { "bbox": [ 39, 434, 285, 556 ], "spans": [ { "bbox": [ 39, 434, 285, 556 ], "image_path": "20309197b63052a64026f18a145ddb4f27a29b93ae7e58f1c22554a3457647fe.jpg", "score": 0.999991774559021, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 34, 562, 294, 594 ], "lines": [ { "bbox": [ 36.849998474121094, 561.5473022460938, 291.9652099609375, 573.2125854492188 ], "spans": [ { "bbox": [ 36.849998474121094, 561.5473022460938, 61.66899490356445, 573.2125854492188 ], "content": "Fig. 5.", "score": 1, "type": "text" }, { "bbox": [ 61.66899490356445, 561.8700561523438, 291.9652099609375, 572.674560546875 ], "content": " Initial line bending model. The magnetic field is represented", "score": 1, "type": "text" } ] }, { "bbox": [ 36.85000228881836, 571.8330688476562, 291.970947265625, 582.6375732421875 ], "spans": [ { "bbox": [ 36.85000228881836, 571.8330688476562, 291.970947265625, 582.6375732421875 ], "content": "by the green line, while the velocity field is represented by the black", "score": 1, "type": "text" } ] }, { "bbox": [ 36.85000228881836, 581.7960815429688, 63.2650146484375, 592.6005859375 ], "spans": [ { "bbox": [ 36.85000228881836, 581.7960815429688, 63.2650146484375, 592.6005859375 ], "content": "arrows.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 36, 612.403564453125, 291, 690.1625366210938 ], "lines": [ { "bbox": [ 36, 612.403564453125, 291, 624.4085083007812 ], "spans": [ { "bbox": [ 36.85000228881836, 612.403564453125, 184.93408203125, 624.4085083007812 ], "content": "Semadeni et al. 1996). So, it is not di", "score": 1, "type": "text" }, { "bbox": [ 184.9320068359375, 614.056884765625, 193.17108154296875, 624.0194702148438 ], "content": "ffi", "score": 1, "type": "text" }, { "bbox": [ 193.17100524902344, 612.403564453125, 291.9700927734375, 624.4085083007812 ], "content": "cult to fulfill the require-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 623.3626098632812, 291, 635.3675537109375 ], "spans": [ { "bbox": [ 36.850006103515625, 623.3626098632812, 218.0796661376953, 635.3675537109375 ], "content": "ment for the development of the NTSI at the", "score": 1, "type": "text" }, { "bbox": [ 218.0796661376953, 623.3626098632812, 263.1861267089844, 635.2579345703125 ], "content": " condensed", "score": 1, "type": "text" }, { "bbox": [ 263.1860046386719, 623.3626098632812, 291.96795654296875, 635.3675537109375 ], "content": ", rather", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 634.3215942382812, 291, 646.3265380859375 ], "spans": [ { "bbox": [ 36.850006103515625, 634.3215942382812, 291.97222900390625, 646.3265380859375 ], "content": "than the shocked, layer (Hueckstaedt 2003), as demonstrated by", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 645.2805786132812, 291, 657.2855224609375 ], "spans": [ { "bbox": [ 36.850006103515625, 645.2805786132812, 291.9722595214844, 657.2855224609375 ], "content": "the growth of the bending mode perturbation (the increase in", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 656.2396240234375, 291, 668.2445678710938 ], "spans": [ { "bbox": [ 36.850006103515625, 656.2396240234375, 291.9722595214844, 668.2445678710938 ], "content": "the curvature) for the dense layer in our 2D simulation. This", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 667.1986083984375, 291, 679.2035522460938 ], "spans": [ { "bbox": [ 36.850006103515625, 667.1986083984375, 291.97222900390625, 679.2035522460938 ], "content": "means that NTSI can be triggered by not-so-strong shocks in", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 678.1575927734375, 138.677734375, 690.1625366210938 ], "spans": [ { "bbox": [ 36.850006103515625, 678.1575927734375, 138.677734375, 690.1625366210938 ], "content": "the strongly cooling case.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 707, 273, 730 ], "lines": [ { "bbox": [ 36.850006103515625, 708.120361328125, 272.42156982421875, 719.83740234375 ], "spans": [ { "bbox": [ 36.850006103515625, 708.120361328125, 272.42156982421875, 719.83740234375 ], "content": "5.4. The effect of the magnetic field on the NTSI and the", "score": 1, "type": "text" } ] }, { "bbox": [ 55.95500564575195, 719.0794067382812, 105.30291748046875, 730.7964477539062 ], "spans": [ { "bbox": [ 55.95500564575195, 719.0794067382812, 105.30291748046875, 730.7964477539062 ], "content": "shear strain", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 36, 738.0115966796875, 291, 760.9755249023438 ], "lines": [ { "bbox": [ 36, 738.0115966796875, 291, 750.0165405273438 ], "spans": [ { "bbox": [ 36.850006103515625, 738.0115966796875, 291.9722595214844, 750.0165405273438 ], "content": "The NTSI is one of the possible mechanisms yielding the shear", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 748.9705810546875, 291, 760.9755249023438 ], "spans": [ { "bbox": [ 36.850006103515625, 748.9705810546875, 291.9721984863281, 760.9755249023438 ], "content": "strain proposed by Hennebelle (2013) to be responsible for the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 438.42962646484375, 558, 450.4345703125 ], "spans": [ { "bbox": [ 303.3070068359375, 438.42962646484375, 558.42919921875, 450.4345703125 ], "content": "elongation of filamentary CACs and the alignment of these struc-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 449.38861083984375, 558, 461.3935546875 ], "spans": [ { "bbox": [ 303.3070068359375, 449.38861083984375, 558.42919921875, 461.3935546875 ], "content": "tures with the local magnetic field, since it produces the momen-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 460.34759521484375, 558, 472.3525390625 ], "spans": [ { "bbox": [ 303.3070068359375, 460.34759521484375, 558.4291381835938, 472.3525390625 ], "content": "tum transport from the original inflow direction to that parallel", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 471.30657958984375, 558, 483.3115234375 ], "spans": [ { "bbox": [ 303.3070068359375, 471.30657958984375, 558.4290161132812, 483.3115234375 ], "content": "to the dense layer in the regions around the nodes, as can be", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 482.26556396484375, 558, 494.2705078125 ], "spans": [ { "bbox": [ 303.3070068359375, 482.26556396484375, 558.4292602539062, 494.2705078125 ], "content": "seen in Figure 7. However, Heitsch et al. (2007) found that when", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 493.22454833984375, 558, 505.2294921875 ], "spans": [ { "bbox": [ 303.3070068359375, 493.22454833984375, 558.4292602539062, 505.2294921875 ], "content": "the magnetic field is aligned with the inflow, it tends to weaken", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 504.18353271484375, 558, 516.1884765625 ], "spans": [ { "bbox": [ 303.3070068359375, 504.18353271484375, 558.4293212890625, 516.1884765625 ], "content": "or even suppress the NTSI due to the magnetic tension coun-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 515.1425170898438, 558, 527.1474609375 ], "spans": [ { "bbox": [ 303.3070068359375, 515.1425170898438, 558.42919921875, 527.1474609375 ], "content": "teracting the transverse momentum transport. Nevertheless, the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 526.1015014648438, 558, 538.1064453125 ], "spans": [ { "bbox": [ 303.3070068359375, 526.1015014648438, 325.44390869140625, 538.1064453125 ], "content": "NTSI", "score": 1, "type": "text" }, { "bbox": [ 325.44390869140625, 526.1015014648438, 342.78399658203125, 537.996826171875 ], "content": " can", "score": 1, "type": "text" }, { "bbox": [ 342.78399658203125, 526.1015014648438, 558.4205322265625, 538.1064453125 ], "content": " contribute to the change of direction of the magnetic", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 537.0604858398438, 558, 549.0654296875 ], "spans": [ { "bbox": [ 303.3070068359375, 537.0604858398438, 558.4291381835938, 549.0654296875 ], "content": "field if the flow surrounding the dense layer, remains at least", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 548.0184936523438, 558, 560.0234375 ], "spans": [ { "bbox": [ 303.3070068359375, 548.0184936523438, 426.56427001953125, 560.0234375 ], "content": "transalfvénic, so that it has su", "score": 1, "type": "text" }, { "bbox": [ 426.56298828125, 549.6718139648438, 434.80206298828125, 559.6343994140625 ], "content": "ffi", "score": 1, "type": "text" }, { "bbox": [ 434.802001953125, 548.0184936523438, 558.4279174804688, 560.0234375 ], "content": "cient energy to bend the field.", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 558.9774780273438, 558, 570.982421875 ], "spans": [ { "bbox": [ 303.3070068359375, 558.9774780273438, 558.4292602539062, 570.982421875 ], "content": "This condition is indeed satisfied by the flow between the shock", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 569.9364624023438, 558, 581.94140625 ], "spans": [ { "bbox": [ 303.3070068359375, 569.9364624023438, 558.4290771484375, 581.94140625 ], "content": "and the condensation front, as can be seen for the 2D simulation", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 580.8954467773438, 558, 592.900390625 ], "spans": [ { "bbox": [ 303.3070068359375, 580.8954467773438, 558.4290161132812, 592.900390625 ], "content": "in both panels of Figure 7. Note, incidentally, that the flow inside", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 591.8544921875, 462.6687316894531, 603.8594360351562 ], "spans": [ { "bbox": [ 303.3070068359375, 591.8544921875, 462.6687316894531, 603.8594360351562 ], "content": "the dense layer is generally subalfvénic.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 438.42962646484375, 558, 603.8594360351562 ], "lines": [], "lines_deleted": true, "type": "text" }, { "bbox": [ 303, 606.5044555664062, 558, 760.9754028320312 ], "lines": [ { "bbox": [ 318.2510070800781, 606.5044555664062, 558, 618.5093994140625 ], "spans": [ { "bbox": [ 318.2510070800781, 606.5044555664062, 558.4293212890625, 618.5093994140625 ], "content": "Another source of shear strain that does not require the NTSI", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 617.4634399414062, 558, 629.4683837890625 ], "spans": [ { "bbox": [ 303.3070068359375, 617.4634399414062, 558.42919921875, 629.4683837890625 ], "content": "is observed in our 3D simulation, which does not include an ini-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 628.4224853515625, 558, 640.4274291992188 ], "spans": [ { "bbox": [ 303.3070068359375, 628.4224853515625, 558.4291381835938, 640.4274291992188 ], "content": "tial bending-mode perturbation to the locus of the collision front.", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 639.3814697265625, 558, 651.3864135742188 ], "spans": [ { "bbox": [ 303.3070068359375, 639.3814697265625, 558.4292602539062, 651.3864135742188 ], "content": "This arises later in the evolution, when the magnetic field lines", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 650.3404541015625, 558, 662.3453979492188 ], "spans": [ { "bbox": [ 303.3070068359375, 650.3404541015625, 558.4293212890625, 662.3453979492188 ], "content": "have already been dragged and bent by the compressive velocity", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 661.2994384765625, 558, 673.3043823242188 ], "spans": [ { "bbox": [ 303.3070068359375, 661.2994384765625, 558.42919921875, 673.3043823242188 ], "content": "field. At this time, the transalfvénic condition of the post-shock", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 672.2574462890625, 558, 684.2623901367188 ], "spans": [ { "bbox": [ 303.3070068359375, 672.2574462890625, 558.4291381835938, 684.2623901367188 ], "content": "flow allows the magnetic field to partially re-orient the gas flow", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 683.2164306640625, 558, 695.2213745117188 ], "spans": [ { "bbox": [ 303.3070068359375, 683.2164306640625, 558.4293212890625, 695.2213745117188 ], "content": "along them. Since the field lines have been oriented nearly par-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 694.1754150390625, 558, 706.1803588867188 ], "spans": [ { "bbox": [ 303.3070068359375, 694.1754150390625, 558.42919921875, 706.1803588867188 ], "content": "allel to the dense layer by the compressive post-shock flow, the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 705.1344604492188, 558, 717.139404296875 ], "spans": [ { "bbox": [ 303.3070068359375, 705.1344604492188, 558.4292602539062, 717.139404296875 ], "content": "velocity field is also oriented in a similar way, and in opposite", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 716.0934448242188, 558, 728.098388671875 ], "spans": [ { "bbox": [ 303.3070068359375, 716.0934448242188, 558.4293212890625, 728.098388671875 ], "content": "directions on each side of the dense layer, therefore adding a", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 727.0524291992188, 558, 739.057373046875 ], "spans": [ { "bbox": [ 303.3070068359375, 727.0524291992188, 558.4293823242188, 739.057373046875 ], "content": "strong shear component to the flow around the layer. We can", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 738.011474609375, 558, 750.0164184570312 ], "spans": [ { "bbox": [ 303.3070068359375, 738.011474609375, 558.4292602539062, 750.0164184570312 ], "content": "see one example of this situation in Figure 9, where the velocity", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 748.970458984375, 558, 760.9754028320312 ], "spans": [ { "bbox": [ 303.3070068359375, 748.970458984375, 558.42919921875, 760.9754028320312 ], "content": "fields are represented by dark arrows and the magnetic field lines", "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 37, 771, 139, 779 ], "lines": [ { "bbox": [ 36.850006103515625, 769.8160400390625, 140.08016967773438, 780.6205444335938 ], "spans": [ { "bbox": [ 36.850006103515625, 769.8160400390625, 140.08016967773438, 780.6205444335938 ], "content": "Article number, page 8 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 241, 34, 355, 43 ], "lines": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "spans": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 247.45773315429688, 43.38558578491211 ], "content": "A", "score": 1, "type": "text" }, { "bbox": [ 247.45700073242188, 34.06907653808594, 254.432861328125, 43.03547668457031 ], "content": "&", "score": 1, "type": "text" }, { "bbox": [ 254.43299865722656, 32.58107376098633, 288.55010986328125, 43.38558578491211 ], "content": "A proofs:", "score": 1, "type": "text" }, { "bbox": [ 288.55010986328125, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "content": " manuscript no. aa", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 7, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 35, 65, 559, 372 ], "blocks": [ { "bbox": [ 76, 65, 519, 332 ], "lines": [ { "bbox": [ 76, 65, 519, 332 ], "spans": [ { "bbox": [ 76, 65, 519, 332 ], "image_path": "a016e35e4123cb93083ceab6f631eedd0ca3e0cb0f667feab77b85ceaa4993ac.jpg", "score": 0.9999589323997498, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 35, 350, 559, 372 ], "lines": [ { "bbox": [ 36.849998474121094, 350.5032653808594, 558.4287719726562, 362.1685791015625 ], "spans": [ { "bbox": [ 36.849998474121094, 350.5032653808594, 60.53923034667969, 362.1685791015625 ], "content": "Fig. 6.", "score": 1, "type": "text" }, { "bbox": [ 60.53923034667969, 350.8260803222656, 126.00564575195312, 361.6305847167969 ], "content": " Number density (", "score": 1, "type": "text" }, { "bbox": [ 126.00900268554688, 350.8260803222656, 137.4680633544922, 361.5319519042969 ], "content": "top", "score": 1, "type": "text" }, { "bbox": [ 137.46800231933594, 350.8260803222656, 184.7119598388672, 361.6305847167969 ], "content": "), velocities (", "score": 1, "type": "text" }, { "bbox": [ 184.71400451660156, 350.8260803222656, 209.12054443359375, 361.5319519042969 ], "content": "middle", "score": 1, "type": "text" }, { "bbox": [ 209.12100219726562, 350.8260803222656, 337.914306640625, 361.6305847167969 ], "content": "), and magnetic fields components (", "score": 1, "type": "text" }, { "bbox": [ 337.9169921875, 350.8260803222656, 362.82568359375, 361.5319519042969 ], "content": "bottom", "score": 1, "type": "text" }, { "bbox": [ 362.8249816894531, 350.8260803222656, 460.3883056640625, 361.6305847167969 ], "content": ") along a ray parallel to the", "score": 1, "type": "text" }, { "bbox": [ 460.3883056640625, 350.8260803222656, 463.2359924316406, 361.5319519042969 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 462, 353, 468, 360 ], "content": "x", "score": 0.79, "type": "inline_equation" }, { "bbox": [ 467.2170715332031, 350.8260803222656, 511.30181884765625, 361.6305847167969 ], "content": " axis at time", "score": 1, "type": "text" }, { "bbox": [ 511.30181884765625, 350.8260803222656, 513.7039794921875, 361.5319519042969 ], "content": " ", "score": 1, "type": "text" }, { "bbox": [ 513, 351, 539, 360 ], "content": "t=0.7", "score": 0.84, "type": "inline_equation" }, { "bbox": [ 538.837158203125, 350.8260803222656, 558.4287719726562, 361.6305847167969 ], "content": " Myr.", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849945068359375, 360.7890930175781, 438.78662109375, 371.5935974121094 ], "spans": [ { "bbox": [ 36.849945068359375, 360.7890930175781, 438.78662109375, 371.5935974121094 ], "content": "It can be seen that the profile of these quantities agrees with the assumptions made for the line bending analysis.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 35, 386, 559, 679 ], "blocks": [ { "bbox": [ 66, 386, 526, 649 ], "lines": [ { "bbox": [ 66, 386, 526, 649 ], "spans": [ { "bbox": [ 66, 386, 526, 649 ], "image_path": "ca926a5bb8d76affe5cf74afe2fdf2a009d6f84a3c5cb864ab27dabc8bc5df1a.jpg", "score": 0.9999905824661255, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 35, 658, 559, 679 ], "lines": [ { "bbox": [ 36.849998474121094, 658.0072631835938, 558.424072265625, 669.6725463867188 ], "spans": [ { "bbox": [ 36.849998474121094, 658.0072631835938, 60.126773834228516, 669.6725463867188 ], "content": "Fig. 7.", "score": 1, "type": "text" }, { "bbox": [ 60.126773834228516, 658.3300170898438, 558.424072265625, 669.134521484375 ], "content": " Two-dimensional simulation of warn atomic colliding flows with a curvilinear collision interface at 0.04 Myr (left panel) and 3.0 Myr (right", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 668.2930297851562, 353.25634765625, 679.0975341796875 ], "spans": [ { "bbox": [ 36.849998474121094, 668.2930297851562, 353.25634765625, 679.0975341796875 ], "content": "panel). The two color bars represent the number density and the Alfvénic Mach number.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 36, 697.2095947265625, 291, 753.0494995117188 ], "lines": [ { "bbox": [ 36, 697.2095947265625, 291, 709.2145385742188 ], "spans": [ { "bbox": [ 36.849998474121094, 697.2095947265625, 291.9722595214844, 709.2145385742188 ], "content": "are color-coded with the Alfvénic Mach number. In this Figure,", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 708.1685791015625, 291, 720.1735229492188 ], "spans": [ { "bbox": [ 36.849998474121094, 708.1685791015625, 291.9721984863281, 720.1735229492188 ], "content": "the troughs and peaks of the CACs do not show corresponding", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 719.1275634765625, 291, 731.1325073242188 ], "spans": [ { "bbox": [ 36.849998474121094, 719.1275634765625, 291.97222900390625, 731.1325073242188 ], "content": "converging and diverging velocity fields, as would correspond to", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 730.0855712890625, 291, 742.0905151367188 ], "spans": [ { "bbox": [ 36.849998474121094, 730.0855712890625, 291.9722900390625, 742.0905151367188 ], "content": "the NTSI, and so the structure at this point appears not have been", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 741.0445556640625, 139.15589904785156, 753.0494995117188 ], "spans": [ { "bbox": [ 36.849998474121094, 741.0445556640625, 139.15589904785156, 753.0494995117188 ], "content": "formed by this instability.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 697.3953857421875, 553.9365234375, 709.1124267578125 ], "lines": [ { "bbox": [ 303, 697.3953857421875, 553.9365234375, 709.1124267578125 ], "spans": [ { "bbox": [ 303.3070068359375, 697.3953857421875, 553.9365234375, 709.1124267578125 ], "content": "5.5. Inhibition of turbulence generation by the magnetic field", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 716.0935668945312, 558, 760.9755249023438 ], "lines": [ { "bbox": [ 303, 716.0935668945312, 558, 728.0985107421875 ], "spans": [ { "bbox": [ 303.3070068359375, 716.0935668945312, 558.4292602539062, 728.0985107421875 ], "content": "It has been noticed in previous works that MHD simulations of", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 727.0526123046875, 558, 739.0575561523438 ], "spans": [ { "bbox": [ 303.3070068359375, 727.0526123046875, 558.42919921875, 739.0575561523438 ], "content": "cloud formation are less turbulent and show more filamentary", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 738.0115966796875, 558, 750.0165405273438 ], "spans": [ { "bbox": [ 303.3070068359375, 738.0115966796875, 558.42919921875, 750.0165405273438 ], "content": "structure than pure hydrodynamical simulations (e.g., Heitsch", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 748.9705810546875, 558, 760.9755249023438 ], "spans": [ { "bbox": [ 303.3070068359375, 748.9705810546875, 558.4292602539062, 760.9755249023438 ], "content": "et al. 2007, 2009; Hennebelle 2013; Zamora-Avilés et al. 2018).", "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 174, 34, 421, 43 ], "lines": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "spans": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "content": "Granda-Muñoz et al.: Magnetic field alignment in interstellar clouds", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 455, 770, 558, 780 ], "lines": [ { "bbox": [ 455.19500732421875, 769.8160400390625, 558.4251708984375, 780.6205444335938 ], "spans": [ { "bbox": [ 455.19500732421875, 769.8160400390625, 558.4251708984375, 780.6205444335938 ], "content": "Article number, page 9 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 8, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 35, 74, 560, 288 ], "blocks": [ { "bbox": [ 109, 74, 481, 226 ], "lines": [ { "bbox": [ 109, 74, 481, 226 ], "spans": [ { "bbox": [ 109, 74, 481, 226 ], "image_path": "1f27ef2fef6114f0de68838b3cd40ce18aa5c7664de720b06628a3bbd4d0ee35.jpg", "score": 0.9999811053276062, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 35, 266, 560, 288 ], "lines": [ { "bbox": [ 36.849998474121094, 266.5202331542969, 558.4307250976562, 278.185546875 ], "spans": [ { "bbox": [ 36.849998474121094, 266.5202331542969, 60.61992645263672, 278.185546875 ], "content": "Fig. 8.", "score": 1, "type": "text" }, { "bbox": [ 60.61992645263672, 266.8430480957031, 558.4307250976562, 277.6475524902344 ], "content": " Line bending model for the colliding flows with curvilinear collision interface. The left panel represents the initial state and the right one", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 276.8060607910156, 477.6650085449219, 287.6105651855469 ], "spans": [ { "bbox": [ 36.849998474121094, 276.8060607910156, 477.6650085449219, 287.6105651855469 ], "content": "the evolution according to the analytical model given by equation (8). In this sketch, the black arrows are the velocity field.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 35, 296, 560, 682 ], "blocks": [ { "bbox": [ 65, 296, 530, 646 ], "lines": [ { "bbox": [ 65, 296, 530, 646 ], "spans": [ { "bbox": [ 65, 296, 530, 646 ], "image_path": "329815eddd82ed213d9de2f0ae154fcbb8ec8ab94130238c0b92f0f166ff1bad.jpg", "score": 0.9999808073043823, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 35, 650, 560, 682 ], "lines": [ { "bbox": [ 36.849998474121094, 650.9202880859375, 558.4234619140625, 662.5855712890625 ], "spans": [ { "bbox": [ 36.849998474121094, 650.9202880859375, 60.835121154785156, 662.5855712890625 ], "content": "Fig. 9.", "score": 1, "type": "text" }, { "bbox": [ 60.835121154785156, 651.2430419921875, 558.4234619140625, 662.0475463867188 ], "content": " A couple of filamentary CACs located in the left-down corner. In the provided animation showing this region, it can be seen a turbulent", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 661.2060546875, 558.42529296875, 672.0105590820312 ], "spans": [ { "bbox": [ 36.849998474121094, 661.2060546875, 558.42529296875, 672.0105590820312 ], "content": "shear strain velocity field along their main axis and aligned with the local magnetic field. Note that the velocity field on the filamentary CACs is", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 671.1680297851562, 236.56793212890625, 681.9725341796875 ], "spans": [ { "bbox": [ 36.849998474121094, 671.1680297851562, 43.82585906982422, 681.9725341796875 ], "content": "di", "score": 1, "type": "text" }, { "bbox": [ 43.82599639892578, 672.6560668945312, 49.20583724975586, 681.6224365234375 ], "content": "ff", "score": 1, "type": "text" }, { "bbox": [ 49.205997467041016, 671.1680297851562, 236.56793212890625, 681.9725341796875 ], "content": "erent from the one expected in the case of the NTSI.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 36, 700.0845947265625, 291, 755.9244995117188 ], "lines": [ { "bbox": [ 36, 700.0845947265625, 291, 712.0895385742188 ], "spans": [ { "bbox": [ 36.849998474121094, 700.0845947265625, 291.9722595214844, 712.0895385742188 ], "content": "The generation of turbulence in curved compressed layers is due", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 711.0435791015625, 291, 723.0485229492188 ], "spans": [ { "bbox": [ 36.849998474121094, 711.0435791015625, 291.9721984863281, 723.0485229492188 ], "content": "to the KH instability, which in turn is triggered by the shear", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 722.0025634765625, 291, 734.0075073242188 ], "spans": [ { "bbox": [ 36.849998474121094, 722.0025634765625, 291.9721984863281, 734.0075073242188 ], "content": "flow produced by the NTSI (e.g. Blondin & Marks 1996; Heitsch", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 732.9615478515625, 291, 744.9664916992188 ], "spans": [ { "bbox": [ 36.849998474121094, 732.9615478515625, 291.9722595214844, 744.9664916992188 ], "content": "et al. 2006). Therefore, the magnetic tension, which opposes the", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 743.9195556640625, 291, 755.9244995117188 ], "spans": [ { "bbox": [ 36.849998474121094, 743.9195556640625, 291.9723205566406, 755.9244995117188 ], "content": "vorticity generation by the shear flow across the dense layer, may", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 700.0845947265625, 558, 712.0895385742188 ], "spans": [ { "bbox": [ 303.3070068359375, 700.0845947265625, 558.429443359375, 712.0895385742188 ], "content": "suppress the development of the KHI and, as a consequence,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 711.0435791015625, 558, 723.0485229492188 ], "spans": [ { "bbox": [ 303.3070068359375, 711.0435791015625, 558.42919921875, 723.0485229492188 ], "content": "the generation of turbulence. Indeed, a 2D numerical simulation", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 722.0025634765625, 558, 734.0075073242188 ], "spans": [ { "bbox": [ 303.3070068359375, 722.0025634765625, 558.42919921875, 734.0075073242188 ], "content": "without the magnetic field exhibits a much stronger turbulence", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 732.9615478515625, 407.26678466796875, 744.9664916992188 ], "spans": [ { "bbox": [ 303.3070068359375, 732.9615478515625, 407.26678466796875, 744.9664916992188 ], "content": "level, as shown in Fig. 10.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 700.0845947265625, 558, 744.9664916992188 ], "lines": [], "lines_deleted": true, "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 36, 771, 144, 779 ], "lines": [ { "bbox": [ 36.850006103515625, 769.8156127929688, 144.56336975097656, 780.6201171875 ], "spans": [ { "bbox": [ 36.850006103515625, 769.8156127929688, 144.56336975097656, 780.6201171875 ], "content": "Article number, page 10 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 240, 33, 355, 43 ], "lines": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "spans": [ { "bbox": [ 240.98399353027344, 32.58107376098633, 247.45773315429688, 43.38558578491211 ], "content": "A", "score": 1, "type": "text" }, { "bbox": [ 247.45700073242188, 34.06907653808594, 254.432861328125, 43.03547668457031 ], "content": "&", "score": 1, "type": "text" }, { "bbox": [ 254.43299865722656, 32.58107376098633, 288.55010986328125, 43.38558578491211 ], "content": "A proofs:", "score": 1, "type": "text" }, { "bbox": [ 288.55010986328125, 32.58107376098633, 354.29205322265625, 43.38558578491211 ], "content": " manuscript no. aa", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 9, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 35, 68, 293, 291 ], "blocks": [ { "bbox": [ 53, 68, 287, 260 ], "lines": [ { "bbox": [ 53, 68, 287, 260 ], "spans": [ { "bbox": [ 53, 68, 287, 260 ], "image_path": "f7d15609b829074edcf52302d5aa20bf41366e9877b3972fd966eb807c8644fb.jpg", "score": 0.9999957084655762, "type": "image" } ] } ], "type": "image_body" }, { "bbox": [ 35, 270, 293, 291 ], "lines": [ { "bbox": [ 36.849998474121094, 269.5072326660156, 291.96533203125, 281.17254638671875 ], "spans": [ { "bbox": [ 36.849998474121094, 269.5072326660156, 67.66751861572266, 281.17254638671875 ], "content": "Fig. 10.", "score": 1, "type": "text" }, { "bbox": [ 67.66751861572266, 269.8300476074219, 291.96533203125, 280.6345520019531 ], "content": " Non-magnetic version of the two-dimensional simulation", "score": 1, "type": "text" } ] }, { "bbox": [ 36.849998474121094, 279.7930603027344, 103.87384033203125, 290.5975646972656 ], "spans": [ { "bbox": [ 36.849998474121094, 279.7930603027344, 103.87384033203125, 290.5975646972656 ], "content": "shown in Figure 7.", "score": 1, "type": "text" } ] } ], "type": "image_caption" } ], "type": "image" }, { "bbox": [ 36, 310, 188, 319 ], "lines": [ { "bbox": [ 36.849998474121094, 309.3853759765625, 187.3450469970703, 321.1024169921875 ], "spans": [ { "bbox": [ 36.849998474121094, 309.3853759765625, 187.3450469970703, 321.1024169921875 ], "content": "5.6. Comparison with previous work", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 36, 326.7995910644531, 291, 415.5164794921875 ], "lines": [ { "bbox": [ 36, 326.7995910644531, 291, 338.8045349121094 ], "spans": [ { "bbox": [ 36.849998474121094, 326.7995910644531, 291.97222900390625, 338.8045349121094 ], "content": "The superalfvénic nature of the initial inflow in our simulations,", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 337.75860595703125, 291, 349.7635498046875 ], "spans": [ { "bbox": [ 36.849998474121094, 337.75860595703125, 291.9722595214844, 349.7635498046875 ], "content": "and its continuation downstream as a transalfvénic flow, allow", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 348.71759033203125, 291, 360.7225341796875 ], "spans": [ { "bbox": [ 36.849998474121094, 348.71759033203125, 291.9722900390625, 360.7225341796875 ], "content": "the dragging and amplification of the magnetic field, in agree-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 359.67559814453125, 291, 371.6805419921875 ], "spans": [ { "bbox": [ 36.849998474121094, 359.67559814453125, 291.9721984863281, 371.6805419921875 ], "content": "ment with Skalidis et al. (2022) whose observations reported", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 370.63458251953125, 291, 384.134521484375 ], "spans": [ { "bbox": [ 36.849998474121094, 370.63458251953125, 158.52322387695312, 382.6395263671875 ], "content": "transalfvénic turbulence in the", "score": 1, "type": "text" }, { "bbox": [ 159, 371, 185, 381 ], "content": "\\mathrm{H}\\mathrm{I}\\mathrm{-}\\mathrm{H}_{2}", "score": 0.83, "type": "inline_equation" }, { "bbox": [ 184.9618682861328, 370.63458251953125, 291.97265625, 384.134521484375 ], "content": " transition region. Accord-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 381.59356689453125, 291, 393.5985107421875 ], "spans": [ { "bbox": [ 36.8499755859375, 381.59356689453125, 291.9722595214844, 393.5985107421875 ], "content": "ing to these authors, atomic gas might accumulate along mag-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 392.55255126953125, 291, 404.5574951171875 ], "spans": [ { "bbox": [ 36.8499755859375, 392.55255126953125, 291.97222900390625, 404.5574951171875 ], "content": "netic field lines, which is also in agreement with our results (see", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 403.51153564453125, 76.14246368408203, 415.5164794921875 ], "spans": [ { "bbox": [ 36.8499755859375, 403.51153564453125, 76.14246368408203, 415.5164794921875 ], "content": "Figure 9).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 414.7155456542969, 291, 514.3914184570312 ], "lines": [ { "bbox": [ 51, 414.7155456542969, 291, 426.7204895019531 ], "spans": [ { "bbox": [ 51.793975830078125, 414.7155456542969, 291.9723205566406, 426.7204895019531 ], "content": "In this work, our simulations consider only the formation of", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 425.674560546875, 291, 437.67950439453125 ], "spans": [ { "bbox": [ 36.8499755859375, 425.674560546875, 291.97222900390625, 437.67950439453125 ], "content": "clouds by the collision of converging cold atomic flows. How-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 436.633544921875, 291, 448.63848876953125 ], "spans": [ { "bbox": [ 36.8499755859375, 436.633544921875, 291.9722595214844, 448.63848876953125 ], "content": "ever, the main physical processes responsible for the alignment", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 447.592529296875, 291, 459.59747314453125 ], "spans": [ { "bbox": [ 36.8499755859375, 447.592529296875, 291.9722595214844, 459.59747314453125 ], "content": "of magnetic field lines and density structures, MHD shocks, and", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 458.551513671875, 291, 470.55645751953125 ], "spans": [ { "bbox": [ 36.8499755859375, 458.551513671875, 291.9722595214844, 470.55645751953125 ], "content": "the NTSI, can be also present at the interfaces between interact-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 469.510498046875, 291, 481.51544189453125 ], "spans": [ { "bbox": [ 36.8499755859375, 469.510498046875, 150.64280700683594, 481.51544189453125 ], "content": "ing wind-blown bubbles and", "score": 1, "type": "text" }, { "bbox": [ 150.64097595214844, 471.163818359375, 153.3607635498047, 481.1264343261719 ], "content": "/", "score": 1, "type": "text" }, { "bbox": [ 153.36097717285156, 469.510498046875, 291.9706115722656, 481.51544189453125 ], "content": "or supernova shells. Therefore, the", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 480.468505859375, 291, 492.47344970703125 ], "spans": [ { "bbox": [ 36.8499755859375, 480.468505859375, 291.9721984863281, 492.47344970703125 ], "content": "MHD shocks and the NTSI could also be the principal physi-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 491.427490234375, 291, 503.43243408203125 ], "spans": [ { "bbox": [ 36.8499755859375, 491.427490234375, 291.97222900390625, 503.43243408203125 ], "content": "cal mechanisms behind the magnetic field alignment with fibers", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 502.386474609375, 234.97616577148438, 514.3914184570312 ], "spans": [ { "bbox": [ 36.8499755859375, 502.386474609375, 234.97616577148438, 514.3914184570312 ], "content": "found in this type of object by Clark et al. (2014).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 534, 182, 545 ], "lines": [ { "bbox": [ 36.8499755859375, 532.9898681640625, 182.31346130371094, 546.006591796875 ], "spans": [ { "bbox": [ 36.8499755859375, 532.9898681640625, 182.31346130371094, 546.006591796875 ], "content": "6. Summary and Conclusions", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 36, 551.219482421875, 291, 639.9373779296875 ], "lines": [ { "bbox": [ 36, 551.219482421875, 291, 563.2244262695312 ], "spans": [ { "bbox": [ 36.8499755859375, 551.219482421875, 291.97222900390625, 563.2244262695312 ], "content": "In this work, we have studied the physical mechanisms responsi-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 562.178466796875, 291, 574.1834106445312 ], "spans": [ { "bbox": [ 36.8499755859375, 562.178466796875, 291.97222900390625, 574.1834106445312 ], "content": "ble for the observed alignment of magnetic field and cold atomic", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 573.137451171875, 291, 585.1423950195312 ], "spans": [ { "bbox": [ 36.8499755859375, 573.137451171875, 291.9721984863281, 585.1423950195312 ], "content": "gravitationally unbound density structures formed by the colli-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 584.096435546875, 291, 596.1013793945312 ], "spans": [ { "bbox": [ 36.8499755859375, 584.096435546875, 291.9722595214844, 596.1013793945312 ], "content": "sion of converging warm atomic gas. We have tracked the evo-", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 595.055419921875, 291, 607.0603637695312 ], "spans": [ { "bbox": [ 36.8499755859375, 595.055419921875, 291.9721984863281, 607.0603637695312 ], "content": "lution of magnetic field lines in a three-dimensional simulation", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 606.0144653320312, 291, 618.0194091796875 ], "spans": [ { "bbox": [ 36.8499755859375, 606.0144653320312, 291.9721374511719, 618.0194091796875 ], "content": "having typical conditions of the warm ISM and found that they", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 616.9734497070312, 291, 628.9783935546875 ], "spans": [ { "bbox": [ 36.8499755859375, 616.9734497070312, 291.97222900390625, 628.9783935546875 ], "content": "become perpendicular to their original orientation and end up", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 627.9324340820312, 161.37249755859375, 639.9373779296875 ], "spans": [ { "bbox": [ 36.8499755859375, 627.9324340820312, 161.37249755859375, 639.9373779296875 ], "content": "aligned with density structures.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 639.136474609375, 291, 694.8667602539062 ], "lines": [ { "bbox": [ 51, 639.136474609375, 291, 651.1414184570312 ], "spans": [ { "bbox": [ 51.793975830078125, 639.136474609375, 291.9723205566406, 651.1414184570312 ], "content": "The process of the alignment of magnetic field lines with", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 650.095458984375, 291, 662.1004028320312 ], "spans": [ { "bbox": [ 36.8499755859375, 650.095458984375, 122.99655151367188, 662.1004028320312 ], "content": "the density structures", "score": 1, "type": "text" }, { "bbox": [ 122.99655151367188, 650.095458984375, 226.50059509277344, 661.9907836914062 ], "content": " starts at the shock fronts", "score": 1, "type": "text" }, { "bbox": [ 226.50059509277344, 650.095458984375, 291.96734619140625, 662.1004028320312 ], "content": " and takes place", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 661.053466796875, 291, 672.9487915039062 ], "spans": [ { "bbox": [ 36.8499755859375, 661.053466796875, 291.9721984863281, 672.9487915039062 ], "content": "in the cooling, thermally unstable gas, so that the magnetic field", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 672.012451171875, 291, 683.9077758789062 ], "spans": [ { "bbox": [ 36.8499755859375, 672.012451171875, 291.97222900390625, 683.9077758789062 ], "content": "already shows a preferred orientation when the flow forms CACs", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 682.971435546875, 128.15719604492188, 694.8667602539062 ], "spans": [ { "bbox": [ 36.8499755859375, 682.971435546875, 128.15719604492188, 694.8667602539062 ], "content": "at the condensed layer.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 36, 694.1754150390625, 291, 760.9754028320312 ], "lines": [ { "bbox": [ 51, 694.1754150390625, 291, 706.1803588867188 ], "spans": [ { "bbox": [ 51.793975830078125, 694.1754150390625, 291.9723205566406, 706.1803588867188 ], "content": "At the position of the shocks, the magnetic field changes its", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 705.1343994140625, 291, 717.1393432617188 ], "spans": [ { "bbox": [ 36.8499755859375, 705.1343994140625, 291.97216796875, 717.1393432617188 ], "content": "direction due to the amplification of its component parallel to", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 716.0934448242188, 291, 728.098388671875 ], "spans": [ { "bbox": [ 36.8499755859375, 716.0934448242188, 291.97216796875, 728.098388671875 ], "content": "the front, which is produced by the velocity fluctuations in the", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 727.0524291992188, 291, 739.057373046875 ], "spans": [ { "bbox": [ 36.8499755859375, 727.0524291992188, 291.97222900390625, 739.057373046875 ], "content": "pre-shock region. This amplification occurs due to a fast MHD", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 738.0114135742188, 291, 750.016357421875 ], "spans": [ { "bbox": [ 36.8499755859375, 738.0114135742188, 291.97222900390625, 750.016357421875 ], "content": "shock that occurs when the upstream and downstream flows are", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 748.970458984375, 168.5854034423828, 760.9754028320312 ], "spans": [ { "bbox": [ 36.8499755859375, 748.970458984375, 168.5854034423828, 760.9754028320312 ], "content": "super– and sub-fast, respectively.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 56.56640625, 558, 167.2012176513672 ], "lines": [ { "bbox": [ 318, 56.56640625, 558, 68.57134246826172 ], "spans": [ { "bbox": [ 318.2509765625, 56.56640625, 558.4293212890625, 68.57134246826172 ], "content": "Behind the shock front, the compressive downstream veloc-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 67.525390625, 558, 79.53032684326172 ], "spans": [ { "bbox": [ 303.3069763183594, 67.525390625, 558.4292602539062, 79.53032684326172 ], "content": "ity field further amplifies the magnetic field component parallel", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 78.484375, 558, 90.48931121826172 ], "spans": [ { "bbox": [ 303.3069763183594, 78.484375, 558.4290161132812, 90.48931121826172 ], "content": "to the shock front, increasing the curvature of the lines in this", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 89.443359375, 558, 101.44829559326172 ], "spans": [ { "bbox": [ 303.3069763183594, 89.443359375, 558.4291381835938, 101.44829559326172 ], "content": "region, and causing them to become increasingly parallel to the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 100.40234375, 558, 112.40727996826172 ], "spans": [ { "bbox": [ 303.3069763183594, 100.40234375, 558.4291381835938, 112.40727996826172 ], "content": "condensed layer produced by the thermal instability. The ampli-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 111.361328125, 558, 123.36626434326172 ], "spans": [ { "bbox": [ 303.3069763183594, 111.361328125, 558.4292602539062, 123.36626434326172 ], "content": "fication of the fluctuation by a compressive velocity gradient can", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 122.3203125, 558, 134.3252410888672 ], "spans": [ { "bbox": [ 303.3069763183594, 122.3203125, 558.4290771484375, 134.3252410888672 ], "content": "be understood through an analysis of the induction equation for", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 133.279296875, 558, 145.2842254638672 ], "spans": [ { "bbox": [ 303.3069763183594, 133.279296875, 558.4292602539062, 145.2842254638672 ], "content": "planar geometry (eq. [7]), which shows that the change in the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 144.2373046875, 558, 156.2422332763672 ], "spans": [ { "bbox": [ 303.3069763183594, 144.2373046875, 558.4293212890625, 156.2422332763672 ], "content": "fluctuating field component has the same sign as the fluctuation,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 155.1962890625, 357.55328369140625, 167.2012176513672 ], "spans": [ { "bbox": [ 303.3069763183594, 155.1962890625, 357.55328369140625, 167.2012176513672 ], "content": "amplifying it.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 166.1552734375, 558, 265.83209228515625 ], "lines": [ { "bbox": [ 318, 166.1552734375, 558, 178.1602020263672 ], "spans": [ { "bbox": [ 318.2509765625, 166.1552734375, 558.429443359375, 178.1602020263672 ], "content": "From the same equation, we concluded that a stretching ve-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 177.1142578125, 558, 189.1191864013672 ], "spans": [ { "bbox": [ 303.3069763183594, 177.1142578125, 392.9504089355469, 189.1191864013672 ], "content": "locity gradient causes", "score": 1, "type": "text" }, { "bbox": [ 392.9504089355469, 177.1142578125, 431.9690246582031, 189.0095977783203 ], "content": " damping", "score": 1, "type": "text" }, { "bbox": [ 431.9690246582031, 177.1142578125, 558.4298706054688, 189.1191864013672 ], "content": " of the fluctuating component,", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 188.0732421875, 558, 200.0781707763672 ], "spans": [ { "bbox": [ 303.3070068359375, 188.0732421875, 558.4291381835938, 200.0781707763672 ], "content": "leading to a straightening of the field lines, thus orienting them", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 199.0322265625, 558, 211.0371551513672 ], "spans": [ { "bbox": [ 303.3070068359375, 199.0322265625, 359.75506591796875, 210.9275665283203 ], "content": "perpendicular", "score": 1, "type": "text" }, { "bbox": [ 359.75506591796875, 199.0322265625, 558.4254760742188, 211.0371551513672 ], "content": " to the density structures. We speculate that this is", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 209.9912109375, 558, 221.9961395263672 ], "spans": [ { "bbox": [ 303.3070068359375, 209.9912109375, 558.42919921875, 221.9961395263672 ], "content": "the mechanism occurring during the growth of self-gravitating", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 220.9501953125, 558, 232.9551239013672 ], "spans": [ { "bbox": [ 303.3070068359375, 220.9501953125, 408.6913757324219, 232.9551239013672 ], "content": "structures, where the flow", "score": 1, "type": "text" }, { "bbox": [ 408.6913757324219, 220.9501953125, 457.3052673339844, 232.8455352783203 ], "content": " accelerates", "score": 1, "type": "text" }, { "bbox": [ 457.3052673339844, 220.9501953125, 558.4212646484375, 232.9551239013672 ], "content": " inwards, thus producing", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 231.9091796875, 558, 243.9141082763672 ], "spans": [ { "bbox": [ 303.3070068359375, 231.9091796875, 558.4291381835938, 243.9141082763672 ], "content": "a tidal stretching velocity pattern, thus being a possible expla-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 242.8681640625, 558, 254.8730926513672 ], "spans": [ { "bbox": [ 303.3070068359375, 242.8681640625, 558.4290771484375, 254.8730926513672 ], "content": "nation for the perpendicular orientation of the field lines around", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 253.8271484375, 472.45196533203125, 265.83209228515625 ], "spans": [ { "bbox": [ 303.3070068359375, 253.8271484375, 472.45196533203125, 265.83209228515625 ], "content": "self-gravitating molecular cloud filaments.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 264.78515625, 558, 353.50299072265625 ], "lines": [ { "bbox": [ 318, 264.78515625, 558, 276.79010009765625 ], "spans": [ { "bbox": [ 318.2510070800781, 264.78515625, 462.8480529785156, 276.79010009765625 ], "content": "In conclusion, we have found that a", "score": 1, "type": "text" }, { "bbox": [ 462.8480529785156, 264.78515625, 495.1838073730469, 276.6805114746094 ], "content": " settling", "score": 1, "type": "text" }, { "bbox": [ 495.1838073730469, 264.78515625, 558.4208984375, 276.79010009765625 ], "content": " (i.e., decelerat-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 275.744140625, 558, 287.74908447265625 ], "spans": [ { "bbox": [ 303.3070068359375, 275.744140625, 558.42919921875, 287.74908447265625 ], "content": "ing) flow, such as that occurring due to the condensation of the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 286.703125, 558, 298.70806884765625 ], "spans": [ { "bbox": [ 303.3070068359375, 286.703125, 558.42919921875, 298.70806884765625 ], "content": "gas by thermal instability orients the lines parallel to the density", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 297.662109375, 558, 309.66705322265625 ], "spans": [ { "bbox": [ 303.3070068359375, 297.662109375, 378.3054504394531, 309.66705322265625 ], "content": "structures, while a", "score": 1, "type": "text" }, { "bbox": [ 378.3054504394531, 297.662109375, 421.25030517578125, 309.5574645996094 ], "content": " stretching", "score": 1, "type": "text" }, { "bbox": [ 421.25030517578125, 297.662109375, 558.4276123046875, 309.66705322265625 ], "content": " (accelerating) one, such as infall", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 308.62109375, 558, 320.62603759765625 ], "spans": [ { "bbox": [ 303.3070068359375, 308.62109375, 558.42919921875, 320.62603759765625 ], "content": "into a potential well, orients the field lines perpendicular to the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 319.580078125, 558, 331.58502197265625 ], "spans": [ { "bbox": [ 303.3070068359375, 319.580078125, 558.4292602539062, 331.58502197265625 ], "content": "density structures. This may be the physical mechanism behind", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 330.5390625, 558, 342.54400634765625 ], "spans": [ { "bbox": [ 303.3070068359375, 330.5390625, 558.42919921875, 342.54400634765625 ], "content": "the stationarity of these configurations found by Soler & Hen-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 341.498046875, 363.62054443359375, 353.50299072265625 ], "spans": [ { "bbox": [ 303.3070068359375, 341.498046875, 363.62054443359375, 353.50299072265625 ], "content": "nebelle (2017).", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 352.45703125, 558, 397.33795166015625 ], "lines": [ { "bbox": [ 318, 352.45703125, 558, 364.46197509765625 ], "spans": [ { "bbox": [ 318.2510070800781, 352.45703125, 558.4293212890625, 364.46197509765625 ], "content": "Finally, we also found that, under typical conditions of the", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 363.416015625, 558, 375.42095947265625 ], "spans": [ { "bbox": [ 303.3070068359375, 363.416015625, 558.4293823242188, 375.42095947265625 ], "content": "ISM, the flow upstream from the shock front is superalfvénic", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 374.3740234375, 558, 386.37896728515625 ], "spans": [ { "bbox": [ 303.3070068359375, 374.3740234375, 558.4293823242188, 386.37896728515625 ], "content": "and becomes transalfvénic downstream. This allows the velocity", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 385.3330078125, 487.8741455078125, 397.33795166015625 ], "spans": [ { "bbox": [ 303.3070068359375, 385.3330078125, 487.8741455078125, 397.33795166015625 ], "content": "field to bend and drag the magnetic field lines.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 402.0290832519531, 558, 464.89312744140625 ], "lines": [ { "bbox": [ 303, 402.0290832519531, 558, 411.633056640625 ], "spans": [ { "bbox": [ 303.3070068359375, 402.0290832519531, 366.1512756347656, 411.5453796386719 ], "content": "Acknowledgements.", "score": 1, "type": "text" }, { "bbox": [ 366.1512756347656, 402.0290832519531, 558.4215698242188, 411.633056640625 ], "content": " We are grateful to Susan Clark and Laura Fissel for use-", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 410.90509033203125, 558, 420.5090637207031 ], "spans": [ { "bbox": [ 303.3070068359375, 410.90509033203125, 558.4219970703125, 420.5090637207031 ], "content": "ful comments and suggestions. This research was supported by a CONACYT", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 419.7821044921875, 558, 429.3860778808594 ], "spans": [ { "bbox": [ 303.3070068359375, 419.7821044921875, 558.4220581054688, 429.3860778808594 ], "content": "scholarship. GCG and EVS acknowledge support from UNAM-PAPIIT grants", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 428.65911865234375, 558, 438.2630920410156 ], "spans": [ { "bbox": [ 303.3070068359375, 428.65911865234375, 558.4220581054688, 438.2630920410156 ], "content": "IN103822 and IG100223, respectively. In addition, we acknowledge Interstellar", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 437.5351257324219, 558, 447.13909912109375 ], "spans": [ { "bbox": [ 303.3070068359375, 437.5351257324219, 558.4220581054688, 447.13909912109375 ], "content": "Institute’s program “With Two Eyes” and the Paris-Saclay University’s Institut", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 446.4121398925781, 558, 456.01611328125 ], "spans": [ { "bbox": [ 303.3070068359375, 446.4121398925781, 558.4220581054688, 456.01611328125 ], "content": "Pascal for hosting discussions that nourished the development of the ideas behind", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 455.2891540527344, 337, 464.89312744140625 ], "spans": [ { "bbox": [ 303.3070068359375, 455.2891540527344, 335.10772705078125, 464.89312744140625 ], "content": "this work.", "score": 1, "type": "text" } ] } ], "type": "text" }, { "bbox": [ 303, 492, 359, 503 ], "lines": [ { "bbox": [ 303.3070068359375, 491.6244812011719, 359.0736083984375, 504.64117431640625 ], "spans": [ { "bbox": [ 303.3070068359375, 491.6244812011719, 359.0736083984375, 504.64117431640625 ], "content": "References", "score": 1, "type": "text" } ] } ], "type": "title" }, { "bbox": [ 303, 509.4581298828125, 558, 760.4152221679688 ], "lines": [ { "bbox": [ 303, 509.4581298828125, 451, 519.0621337890625 ], "spans": [ { "bbox": [ 303.3070068359375, 509.4581298828125, 451.853759765625, 519.0621337890625 ], "content": "Audit, E. & Hennebelle, P. 2005, A&A, 433, 1", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 518.3851318359375, 467.8258361816406, 527.9891357421875 ], "spans": [ { "bbox": [ 303.3070068359375, 518.3851318359375, 467.8258361816406, 527.9891357421875 ], "content": "Blondin, J. M. & Marks, B. S. 1996, New A, 1, 235", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 527.3131713867188, 558, 536.9171752929688 ], "spans": [ { "bbox": [ 303.3070068359375, 527.3131713867188, 558.4219970703125, 536.9171752929688 ], "content": "Clark, S. E., Hill, J. C., Peek, J. E. G., Putman, M. E., & Babler, B. L. 2015,", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 536.2791748046875, 434, 545.8831787109375 ], "spans": [ { "bbox": [ 313.2669982910156, 536.2791748046875, 434.1415710449219, 545.8831787109375 ], "content": "Physical Review Letters, 115, 241302", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 545.2061767578125, 508.5370178222656, 554.8101806640625 ], "spans": [ { "bbox": [ 303.3070068359375, 545.2061767578125, 508.5370178222656, 554.8101806640625 ], "content": "Clark, S. E., Peek, J. E. G., & Putman, M. E. 2014, ApJ, 789, 82", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 554.1341552734375, 539.070556640625, 563.7381591796875 ], "spans": [ { "bbox": [ 303.3070068359375, 554.1341552734375, 539.070556640625, 563.7381591796875 ], "content": "Delmont, P. & Keppens, R. 2011, Journal of Plasma Physics, 77, 207–229", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 563.0611572265625, 558, 572.6651611328125 ], "spans": [ { "bbox": [ 303.3070068359375, 563.0611572265625, 558.422119140625, 572.6651611328125 ], "content": "Dubey, A., Antypas, K., Ganapathy, M. K., et al. 2009, Parallel Computing, 35,", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 572.0281982421875, 325.2221374511719, 581.6322021484375 ], "spans": [ { "bbox": [ 313.2669982910156, 572.0281982421875, 325.2221374511719, 581.6322021484375 ], "content": "512", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 580.9552001953125, 558, 590.5592041015625 ], "spans": [ { "bbox": [ 303.3070068359375, 580.9552001953125, 558.4220581054688, 590.5592041015625 ], "content": "Dubey, A., Reid, L. B., & Fisher, R. 2008, Physica Scripta Volume T, 132,", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 589.9221801757812, 337, 599.5261840820312 ], "spans": [ { "bbox": [ 313.2669982910156, 589.9221801757812, 337.1772766113281, 599.5261840820312 ], "content": "014046", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 598.8491821289062, 407.3646240234375, 608.4531860351562 ], "spans": [ { "bbox": [ 303.3070068359375, 598.8491821289062, 407.3646240234375, 608.4531860351562 ], "content": "Field, G. B. 1965, ApJ, 142, 531", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 607.7772216796875, 526.844482421875, 617.3812255859375 ], "spans": [ { "bbox": [ 303.3070068359375, 607.7772216796875, 526.844482421875, 617.3812255859375 ], "content": "Field, G. B., Goldsmith, D. W., & Habing, H. J. 1969, ApJ, 155, L149", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 616.7042236328125, 558, 626.3082275390625 ], "spans": [ { "bbox": [ 303.3070068359375, 616.7042236328125, 558.4219970703125, 626.3082275390625 ], "content": "Fryxell, B., Olson, K., Ricker, P., et al. 2000, The Astrophysical Journal Supple-", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 625.670166015625, 382, 635.274169921875 ], "spans": [ { "bbox": [ 313.2669982910156, 625.670166015625, 382.5590515136719, 635.274169921875 ], "content": "ment Series, 131, 273", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 634.5982055664062, 482.8096618652344, 644.2022094726562 ], "spans": [ { "bbox": [ 303.3070068359375, 634.5982055664062, 482.8096618652344, 644.2022094726562 ], "content": "Gazol, A. & Villagran, M. A. 2021, MNRAS, 501, 3099", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 643.5252075195312, 558, 653.1292114257812 ], "spans": [ { "bbox": [ 303.3070068359375, 643.5252075195312, 558.422119140625, 653.1292114257812 ], "content": "Gómez, G. C., Vázquez-Semadeni, E., & Zamora-Avilés, M. 2018, MNRAS,", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 652.4921875, 345, 662.09619140625 ], "spans": [ { "bbox": [ 313.2669982910156, 652.4921875, 345.1473693847656, 662.09619140625 ], "content": "480, 2939", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 661.419189453125, 558, 671.023193359375 ], "spans": [ { "bbox": [ 303.3070068359375, 661.419189453125, 558.4222412109375, 671.023193359375 ], "content": "Heiner, J. S., Vázquez-Semadeni, E., & Ballesteros-Paredes, J. 2015, MNRAS,", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 670.3861694335938, 345, 679.9901733398438 ], "spans": [ { "bbox": [ 313.2669982910156, 670.3861694335938, 345.1473693847656, 679.9901733398438 ], "content": "452, 1353", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 679.3131713867188, 558, 688.9171752929688 ], "spans": [ { "bbox": [ 303.3070068359375, 679.3131713867188, 558.4219360351562, 688.9171752929688 ], "content": "Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Hartmann, L. W., & Burkert, A.", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 688.2791748046875, 382, 697.8831787109375 ], "spans": [ { "bbox": [ 313.2669982910156, 688.2791748046875, 381.8974914550781, 697.8831787109375 ], "content": "2006, ApJ, 648, 1052", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 697.2071533203125, 558, 706.8111572265625 ], "spans": [ { "bbox": [ 303.3070068359375, 697.2071533203125, 558.4219360351562, 706.8111572265625 ], "content": "Heitsch, F., Slyz, A. D., Devriendt, J. E. G., Hartmann, L. W., & Burkert, A.", "score": 1, "type": "text" } ] }, { "bbox": [ 313, 706.1732177734375, 377.9124450683594, 715.7772216796875 ], "spans": [ { "bbox": [ 313.2669982910156, 706.1732177734375, 377.9124450683594, 715.7772216796875 ], "content": "2007, ApJ, 665, 445", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 715.1011962890625, 512.0280151367188, 724.7052001953125 ], "spans": [ { "bbox": [ 303.3070068359375, 715.1011962890625, 512.0280151367188, 724.7052001953125 ], "content": "Heitsch, F., Stone, J. M., & Hartmann, L. W. 2009, ApJ, 695, 248", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 724.0281982421875, 426.3892822265625, 733.6322021484375 ], "spans": [ { "bbox": [ 303.3070068359375, 724.0281982421875, 426.3892822265625, 733.6322021484375 ], "content": "Hennebelle, P. 2013, A&A, 556, A153", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 732.9561767578125, 434, 742.5601806640625 ], "spans": [ { "bbox": [ 303.3070068359375, 732.9561767578125, 433.49066162109375, 742.5601806640625 ], "content": "Hueckstaedt, R. M. 2003, New A, 8, 295", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 741.8831787109375, 451, 751.4871826171875 ], "spans": [ { "bbox": [ 303.3070068359375, 741.8831787109375, 449.2713928222656, 751.4871826171875 ], "content": "Inoue, T. & Inutsuka, S.-i. 2016, ApJ, 833, 10", "score": 1, "type": "text" } ] }, { "bbox": [ 303, 750.8112182617188, 464.1117248535156, 760.4152221679688 ], "spans": [ { "bbox": [ 303.3070068359375, 750.8112182617188, 464.1117248535156, 760.4152221679688 ], "content": "Koyama, H. & Inutsuka, S.-i. 2002, ApJ, 564, L97", "score": 1, "type": "text" } ] } ], "type": "text" } ] }, { "discarded_blocks": [ { "bbox": [ 451, 771, 558, 779 ], "lines": [ { "bbox": [ 450.71197509765625, 769.8159790039062, 558.4253540039062, 780.6204833984375 ], "spans": [ { "bbox": [ 450.71197509765625, 769.8159790039062, 558.4253540039062, 780.6204833984375 ], "content": "Article number, page 11 of 11", "score": 1, "type": "text" } ] } ], "type": "discarded" }, { "bbox": [ 174, 34, 421, 43 ], "lines": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "spans": [ { "bbox": [ 174.968994140625, 32.58107376098633, 420.3074951171875, 43.38558578491211 ], "content": "Granda-Muñoz et al.: Magnetic field alignment in interstellar clouds", "score": 1, "type": "text" } ] } ], "type": "discarded" } ], "page_idx": 10, "page_size": [ 595.2760009765625, 841.8900146484375 ], "preproc_blocks": [ { "bbox": [ 36, 58.40766143798828, 291, 229.40652465820312 ], "lines": [ { "bbox": [ 36, 58.40766143798828, 167.64723205566406, 68.01163482666016 ], "spans": [ { "bbox": [ 36.84999084472656, 58.40766143798828, 167.64723205566406, 68.01163482666016 ], "content": "Pikel’Ner, S. B. 1968, Sov. Astr. 11, 737", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 67.37464141845703, 285, 76.9786148071289 ], "spans": [ { "bbox": [ 36.84999084472656, 67.37464141845703, 285.23809814453125, 76.9786148071289 ], "content": "Planck Collaboration, Adam, R., Ade, P. A. R., et al. 2016a, A&A, 586, A135", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 76.34064483642578, 291, 85.94461822509766 ], "spans": [ { "bbox": [ 36.84999084472656, 76.34064483642578, 291.96484375, 85.94461822509766 ], "content": "Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016b, A&A, 586, A138", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 85.30664825439453, 260, 94.9106216430664 ], "spans": [ { "bbox": [ 36.84999084472656, 85.30664825439453, 259.36712646484375, 94.9106216430664 ], "content": "Seifried, D., Walch, S., Girichidis, P., et al. 2017, MNRAS, 472, 4797", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 94.27362823486328, 246.76638793945312, 103.87760162353516 ], "spans": [ { "bbox": [ 36.84999084472656, 94.27362823486328, 246.76638793945312, 103.87760162353516 ], "content": "Seifried, D., Walch, S., Weis, M., et al. 2020, MNRAS, 497, 4196", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 103.23963165283203, 263.9818115234375, 112.8436050415039 ], "spans": [ { "bbox": [ 36.84999084472656, 103.23963165283203, 263.9818115234375, 112.8436050415039 ], "content": "Skalidis, R., Tassis, K., Panopoulou, G. V., et al. 2022, A&A, 665, A77", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 112.20661163330078, 197.7901611328125, 121.81058502197266 ], "spans": [ { "bbox": [ 36.84999084472656, 112.20661163330078, 197.7901611328125, 121.81058502197266 ], "content": "Soler, J. D. & Hennebelle, P. 2017, A&A, 607, A2", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 121.17261505126953, 253.357666015625, 130.77658081054688 ], "spans": [ { "bbox": [ 36.84999084472656, 121.17261505126953, 253.357666015625, 130.77658081054688 ], "content": "Soler, J. D., Hennebelle, P., Martin, P. G., et al. 2013, ApJ, 774, 128", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 130.13861083984375, 285, 139.74258422851562 ], "spans": [ { "bbox": [ 36.84999084472656, 130.13861083984375, 285.41339111328125, 139.74258422851562 ], "content": "Sullivan, B. & Kaszynski, A. 2019, Journal of Open Source Software, 4, 1450", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 139.1055908203125, 291, 148.70956420898438 ], "spans": [ { "bbox": [ 36.84999084472656, 139.1055908203125, 291.96484375, 148.70956420898438 ], "content": "Vázquez-Semadeni, E., Gómez, G. C., Jappsen, A. K., et al. 2007, ApJ, 657, 870", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 148.07159423828125, 260, 157.67556762695312 ], "spans": [ { "bbox": [ 36.84999084472656, 148.07159423828125, 260.8336486816406, 157.67556762695312 ], "content": "Vázquez-Semadeni, E., Passot, T., & Pouquet, A. 1996, ApJ, 473, 881", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 157.03759765625, 291, 166.64157104492188 ], "spans": [ { "bbox": [ 36.84999084472656, 157.03759765625, 291.9649658203125, 166.64157104492188 ], "content": "Vázquez-Semadeni, E., Ryu, D., Passot, T., Gonzalez, R. F., & Gazol, A. 2006,", "score": 1, "type": "text" } ] }, { "bbox": [ 46, 166.00457763671875, 162.7679443359375, 175.60855102539062 ], "spans": [ { "bbox": [ 46.81098937988281, 166.00457763671875, 162.7679443359375, 175.60855102539062 ], "content": "The Astrophysical Journal, 643, 245", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 174.9705810546875, 150.4557342529297, 184.57455444335938 ], "spans": [ { "bbox": [ 36.84999084472656, 174.9705810546875, 150.4557342529297, 184.57455444335938 ], "content": "Vishniac, E. T. 1994, ApJ, 428, 186", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 183.93756103515625, 291, 193.54153442382812 ], "spans": [ { "bbox": [ 36.84999084472656, 183.93756103515625, 291.96484375, 193.54153442382812 ], "content": "Waagan, K., Federrath, C., & Klingenberg, C. 2011, Journal of Computational", "score": 1, "type": "text" } ] }, { "bbox": [ 46, 192.903564453125, 106.9931869506836, 202.50753784179688 ], "spans": [ { "bbox": [ 46.81098937988281, 192.903564453125, 106.9931869506836, 202.50753784179688 ], "content": "Physics, 230, 3331", "score": 1, "type": "text" } ] }, { "bbox": [ 36, 201.86956787109375, 291, 211.47354125976562 ], "spans": [ { "bbox": [ 36.84999084472656, 201.86956787109375, 291.9649353027344, 211.47354125976562 ], "content": "Zamora-Avilés, M., Vázquez-Semadeni, E., Körtgen, B., Banerjee, R., & Hart-", "score": 1, "type": "text" } ] }, { "bbox": [ 46, 210.8365478515625, 291, 220.44052124023438 ], "spans": [ { "bbox": [ 46.81098937988281, 210.8365478515625, 291.9712219238281, 220.44052124023438 ], "content": "mann, L. 2018, Monthly Notices of the Royal Astronomical Society, 474,", "score": 1, "type": "text" } ] }, { "bbox": [ 46, 219.80255126953125, 62.751190185546875, 229.40652465820312 ], "spans": [ { "bbox": [ 46.81098937988281, 219.80255126953125, 62.751190185546875, 229.40652465820312 ], "content": "4824", "score": 1, "type": "text" } ] } ], "type": "text" } ] } ], "fileName": "f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "fullMdLink": "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=full.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "markdownUrl": [ "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=0.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=1.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=2.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=3.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=4.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=5.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=6.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=7.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=8.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=9.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf", "http://10.6.16.161:5559/api/v2/analysis/pdf_md?filename=10.md&as_attachment=False&pdf=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf" ], "state": "done", "status": 1, "type": "pdf", "url": "/api/v2/analysis/upload_pdf?filename=f0ab99d3cb2ab5fed43307f47dd3e6e2a4189c62b9d2c1151aa5949b43b8a9fd_2405.08702.pdf&as_attachment=False" }, "msg": "success", "success": true }
修改于 2024-09-09 11:44:00