Eden AI
  1. Ocr Async
Eden AI
  • 人工智能产品
    • AskYoDa
      • 列出项目
      • 检索项目
      • 创建项目
      • 添加文件
      • 添加文本
      • 添加网址
      • 询问 LLM
      • 删除块
      • 列出文件
      • 获取文件
      • 删除文件
      • 获取信息
      • 询问
      • 更新项目
      • 删除项目
    • TranslaThor
      • 列出所有 TranslaThor 项目
      • 创建语言提供者对
      • 列出语言
      • 更新语言
      • 删除语言
      • 翻译
      • 翻译
    • askyoda
      • /aiproducts/askyoda/v2/{project_id}/conversations/
      • /aiproducts/askyoda/v2/{project_id}/conversations/
      • /aiproducts/askyoda/v2/{project_id}/conversations/{conversation_id}/
      • /aiproducts/askyoda/v2/{project_id}/conversations/{conversation_id}/
      • /aiproducts/askyoda/v2/{project_id}/conversations/{conversation_id}/
      • /aiproducts/askyoda/v2/{project_id}/conversations/{conversation_id}/
    • X-Merge
      • 列出 XMerge 项目
      • 列出 doc_parser 项目
      • 创建doc_parser项目
      • 检索 doc_parser 项目
      • 更新 doc_parser 项目
      • 文档解析器启动调用
  • 信息
    • 列出提供商子功能
      GET
  • 音频功能
    • 语音转文本
      • 语音转文本列表作业
      • 语音转文本启动作业
      • 语音转文字删除职位
      • 语音转文本获取工作结果
    • 文本转语音
      • 文字转语音
    • 异步文本转语音
      • 文本转语音列表职位
      • 文本转语音启动作业
      • 文本转语音删除作业
      • 文本转语音获取作业结果
  • 翻译功能
    • 自动翻译
      POST
    • 文件翻译
      POST
    • 语言检测
      POST
  • 视频特点
    • 异步露骨内容检测
      • 视频露骨内容检测列表作业
      • 视频露骨内容检测启动作业
      • 视频露骨内容删除作业
      • 视频露骨内容检测获取作业结果
    • 异步人脸检测
      • 人脸检测列表作业
      • 人脸检测启动作业
      • 人脸检测删除作业
      • 人脸检测获取作业结果
    • 异步标签检测
      • 标签检测列表作业
      • 标签检测启动作业
      • 标签检测删除作业
      • 标签检测 获取作业结果
    • 异步徽标检测
      • 视频徽标检测列表作业
      • 视频标志检测启动作业
      • 视频标志检测删除作业
      • 视频标志检测 获取作业结果
    • 异步对象跟踪
      • 视频对象跟踪列表作业
      • 视频对象跟踪启动作业
      • 视频对象跟踪删除作业
      • 视频对象跟踪获取作业结果
    • 人员跟踪异步
      • 人员跟踪列表职位
      • 人员追踪启动作业
      • 人员追踪删除职位
      • 人员追踪 获取工作结果
    • 异步文本检测
      • 文本检测列表作业
      • 文本检测启动作业
      • 文本检测删除作业
      • 文本检测获取作业结果
  • 文字
    • Chat
      • Chat
      • Chat Stream
    • 代码生成
    • 匿名化
    • 代码生成
    • 自定义文本分类
    • 自定义命名实体识别
    • 嵌入
    • 情绪检测
    • Entity Sentiment
    • Generation
    • 关键词提取
    • Moderation
    • 命名实体识别
    • 抄袭检测
    • Prompt 优化
    • 问题解答
    • 搜索
    • 情感分析
    • 拼写检查
    • 总结
    • 语法分析
    • 主题提取
  • OCR FEATURES
    • 匿名化异步
      • 匿名化列表作业
      • 匿名启动作业
      • 匿名删除职位
      • 匿名获取工作结果
    • 自定义文档解析异步
      • 自定义文档解析列表作业
      • 自定义文档解析启动作业
      • 自定义文档解析删除作业
      • 自定义文档解析获取作业结果
    • Ocr Async
      • Ocr 异步列表作业
        GET
      • Ocr 异步启动作业
        POST
      • Ocr 异步删除作业
        DELETE
      • Ocr 异步获取作业结果
        GET
    • Ocr Tables Async
      • OCR 表列出作业
      • OCR 表启动作业
      • OCR 表删除作业
      • OCR 表获取作业结果
    • 银行支票解析
      POST
    • 数据提取
      POST
    • 金融解析器
      POST
    • 身份解析器
      POST
    • 发票解析器
      POST
    • OCR
      POST
    • 收据解析器
      POST
    • 简历解析器
      POST
  • 图像
    • Automl 分类
      • Automl 分类 - 创建项目
      • Automl 分类 - 删除项目
      • Automl 分类 - 列出项目
      • 自动分类预测列表作业
      • Automl 分类预测启动作业
      • Automl 分类 - 预测获取工作结果
      • Automl 分类列车列表作业
      • Automl 分类列车启动作业
      • Automl 分类 - 训练获取作业结果
      • 自动分类上传数据列表作业
      • 自动分类上传数据启动作业
      • Automl 分类 - 上传数据获取作业结果
    • 人脸识别
      • 人脸识别-添加人脸
      • 人脸识别-删除人脸
      • 人脸识别 - 列出人脸
      • 人脸识别 - 人脸识别
    • 搜索
      • 搜索-删除阶段
      • 搜索 - 获取图像
      • 搜索 - 列出所有图像
      • 搜索 - 启动相似度
      • 搜索 - 上传阶段
    • Anonymization
    • 背景去除
    • 嵌入
    • 露骨内容检测
    • 脸部对比
    • 人脸检测
    • 图像生成
    • 地标检测
    • Logo 检测
    • 物体检测
    • 问题解答
  • Batch
    • 获取批量作业结果
    • 启动批处理作业
    • 删除批处理作业
    • 列出批处理作业
  1. Ocr Async

Ocr 异步获取作业结果

开发环境
http://dev-cn.your-api-server.com
开发环境
http://dev-cn.your-api-server.com
GET
/v2/ocr/ocr_async/{public_id}
根据给定的 ID 获取异步作业的状态和结果。
请求示例请求示例
Shell
JavaScript
Java
Swift
curl --location --request GET 'http://dev-cn.your-api-server.com/v2/ocr/ocr_async/?response_as_dict=true&show_original_response=false' \
--header 'Authorization;'
响应示例响应示例
200 - 成功示例
{
  "public_id": "c5848676-5a28-48c5-b15e-d66d67b1cbaa",
  "status": "finished",
  "error": null,
  "results": {
    "microsoft": {
      "error": null,
      "id": "d60ba93c-fb51-462a-a814-1bf253bb6800",
      "final_status": "finished",
      "raw_text": "International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064\nAn Introduction to the Process of Optical Character Recognition\nUmal Patel1 1 Department of Computer Engineering L D College Of Engineering, Gujarat Technological University, Gujarat, India\nAbstract: This paper presents an overview of methods and techniques used for feature extraction that helps in efficient classification of the alphabets and numbers of English language. Character recognition has long been a essential area for research since years. Recognition of character is a minor work for humans, but to make a computer program that does character recognition is extremely difficult. Hence to make a machine recognize the characters and efficiently determine a pattern has been the primary concern for researchers now days This paper discusses various offline and online Optical Character Recognition Techniques (OCR).\nKeywords: OCR, online, offline, online, zoning, euler number.\n1. Introduction\nOCR is an approach that provides a full alphanumeric recognition of printed or handwritten characters at electronically by simply scanning them and generating into a form that can be scanned through a scanner and then the recognition engine of the OCR system interpret the images and turn images of handwritten or printed characters into ASCII data (machine-readable characters).Character recognition also popularly referred as optical character recognition (OCR) is a field of research that has immense potential in future where we want to track and locate every piece of information being exchanged. The problem with the hand written text is due to uncertainties such as variation in calligraphy over period of time, similarity in text, variation in styles of writing [3] The character recognition system helps in making the communication between a human and a computer easy.[4] The character recognition is basically classified into two types: offline handwritten text recognition, online handwritten text recognition. Offline means the text written on the plain paper or sheet and then the writing is usually captured optically by a scanner and the completed writing is available as an image. Online means the text written on any digital devices such as tablets using stylus i.e. the two dimensional coordinates of successive points are represented as a function of time and the order of strokes made by the writer are also available.[6]\n2. Applications recognition\nof optical character\nThe area of OCR is becoming an integral part of document scanners, and is used in many applications such as postal processing, script recognition, banking, security (i.e. passport authentication) and language identification, document reading, mail sorting, signature verification, writer identification., license plate recognition system, smart card processing system, automatic data entry, bank cheque /DD processing, money counting machine, postal automation, address and zip code recognition etc many organizations are depending on OCR systems to eliminate the human interactions for better performance and efficiency [2,4,6,7].\n3. Potential problem areas for OCR\n1. The same characters differ in sizes, shapes and styles from person to person and even from time to time with the same person. The source of confusion is the high level of abstraction: there are thousands styles of type in common use plus variations in calligraphy and a character recognition program must recognize most of these.\n2. Like any image, visual characters are subject to spoilage due to noise. Some images containing characters are already blurred or not clear which makes them difficult to process. Noise consists of random changes to a pattern, particularly near the edges. A character with much noise may be interpreted as a completely different character by a computer program.\n3. There are no hard-and-fast rules that define the appearance of a visual character. Hence rules need to be heuristically deduced from the samples.\n4. Phases of OCR\nData Acquisition\nPre processing\nSegmentation\nNormalization\nFeature Extraction\nClassification\nPost Processing\n155\nVolume 2 Issue 5, May 2013 www.ijsr.net\nInternational Journal of Science and Research (IJSR), India Online ISSN: 2319-7064\n1. Data Acquisition\nMost Important initial phase in OCR is to gather the image from either device sensor like PDA or tablets in case on online recognition or getting the images containing characters directly for offline recognition.\nIn Image acquisition, the recognition system acquires a scanned image as an input image. The image should have a specific format such as JPEG, BMP etc. This image is acquired through a scanner, digital camera or any other suita

请求参数

Path 参数
public_id
string 
必需
Query 参数
response_as_dict
string 
可选
示例值:
true
show_original_response
string 
可选
示例值:
false
Header 参数
Authorization
string 
必需
默认值:
Bearer <your_key>

返回响应

🟢200成功
application/json
Body
public_id
string 
必需
status
string 
必需
error
null 
必需
results
object 
必需
microsoft
object 
必需
amazon
object 
必需
🟠400请求有误
修改于 2024-04-11 07:20:52
上一页
Ocr 异步删除作业
下一页
OCR 表列出作业
Built with